This article presents the results of research that dealt with the development of non-traditional concrete using a hybrid alkali-activated cement. It is concrete based on by-products from a metallurgical plant that replaced 100% of the natural aggregates. Steel slag (CSS, fraction: 0/8 mm) was used as a filler in combination with air-cooled slag (ACBFS, fraction: 8/16 mm and 16/32 mm). Portland blended cement (CEM II/B-S 42.5N) and H-CEMENT were used as binding components in the development of the concrete mixture designs. Both of these cements were produced by Považská cementáreň, a.s., Ladce. Attention was focused on testing the physical and mechanical properties of the developed concretes in various environments. An aqueous environment was selected as the first environment for the placement of test specimens (cubes with 150 mm edges and prisms with dimensions of 100 × 100 × 400 mm3) according to the ČSN EN 206-1 standard and the outdoor environment (August to October). The determination of the cube strength was made after 7, 28, and 90 days, the determination of the flexural and compressive strength was made at the end of the prisms, and the determination of the dynamic modulus of elasticity was made after 28 days on the prisms. The test results of the test specimens, which were placed in two environments, were compared and it was found that, after 90 days, the outdoor environment caused a decrease in the concrete’s strength characteristics when using Portland blended cement (CEM II/ B-S 42.5N) of about 8%; in contrast, when using H-CEMENT, the concrete’s strength increased by about 14%. The use of H-CEMENT and the addition of PUZZOLANIT in the amount of 30% in combination with CEM II/B-S 42.5N in the amount of 70% reduced the decrease in the strength of the concrete after 90 days by about 3%. The research results confirm the suitability of using H-CEMENT and the addition of PUZZOLANIT for the production of concrete based on steel slag (CSS) and air-cooled slag (ACBFS).
This article presents the results of research on the use of unstable steel slag with a fraction of 0/8 mm as a 100% substitute for natural aggregate in concrete production. Two types of cements were used for the production of concrete: Portland cement CEM I 42.5N and hybrid cement H-CEMENT. Both of these cements were produced by the company Považská cementárna, a.s., Ladce. The main objective of this study was to assess the suitable type of binder to be combined with unstable steel slag in the production of concrete composite. The prepared concrete was used to test the properties of a fresh concrete mix, i.e. its consistency and bulk density. Hardened concrete was used to test the strength and deformation properties, including cube strength after 3, 7, 14, 21, 28 and 90 days, as well as prism strength after 28 days. The static modulus of elasticity was determined using prisms after 28 days of age of the test specimens. Our attention was also focused on determining the class of leachability of the concretes based on steel slag with CEM I 42.5N and H-CEMENT. The durability of concrete prepared on the basis of steel slag was tested in an environment with increased temperature and pressure. The results of the strength characteristics tests show a difference between the 28-day average cube strength of concrete using CEM I 42.5N and H-CEMENT (34.6 MPa and 29.1 MPa), while after 90 days, the average cube strength value stabilized at about 38 MPa. The average values of the static modulus of elasticity when using CEM I 42.5N and H-CEMENT are almost identical, achieving values of 32.5 GPa and 32.8 GPa, respectively. Concrete based on steel slag with CEM I 42.5N and H-CEMENT can be included in leachability class IIb. The results of the durability test of concrete based on steel slag in an environment with increased temperature and pressure confirmed the use of H-CEMENT hybrid cement from the company Považská cementáren, a.s., Ladce, as a suitable binder. .
This article deals with the determination of technically important properties, the recognition of microstructure and pore structure, and the mortar resistance of a new cement kind NONRIVAL CEM I 52.5 N containing 7.94% wt. of C3A to 5% sodium sulfate solution. Both reference types of cement were industrially manufactured: 1) ordinary Portland cement CEM I 42.5 R and 2) Portland cement CEM I 42.5 R – SR 0, declared as sulfate resistant because of C3A = 0%. The research was carried out at standardized mortars. The used sodium sulfate solution, which contained 33802.8 mg of aggressive SO4 2− per liter, exceeded approximately 5 to 10 times the concentration of the third degree of aggressiveness of the XA chemical environment according to STN EN 206 + A1. The reference medium was drinking water. The 5-year results of non-destructive and destructive physical-mechanical tests as well as the formed microstructure and pore structure in both liquid media were evaluated. The cause of the NONRIVAL CEM I 52.5 N sulfate resistance was explained, despite the manufacturer’s declared C3A content of up to 8% by weight. Sulfate resistance of NONRIVAL CEM I 52.5 N is found comparable to that of sulfate resistant CEM I 42.5 R – SR 0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.