In photopolymerization reactions, mostly multifunctional monomers are employed, as they ensure fast reaction times and good final mechanical properties of the cured materials. Drawing conclusions about the influence of the components and curing conditions on the mechanical properties of the subsequently formed insoluble networks is challenging. Therefore, an in situ observation of chemical and mechanical characteristics during the photopolymerization reaction is desired. By coupling of an infrared spectrometer with a photorheometer, a broad spectrum of different photopolymerizable formulations can be analyzed during the curing reaction. The rheological information (i.e., time to gelation, final modulus, shrinkage force) can be derived from a parallel plate rheometer equipped with a UV- and IR-translucent window (glass for NIR and CaF window for MIR). Chemical information (i.e., conversion at the gel point and final conversion) is gained by monitoring the decrease of the corresponding IR-peak for the reactive monomer unit (e.g., C═C double bond peak for (meth)acrylates, H-S thiol and C═C double bond peak in thiol-ene systems, C-O epoxy peak for epoxy resins). Depending on the relative concentration of reactive functional groups in the sample volume and the intensity of the IR signal, the conversion can be monitored in the near-infrared region (e.g., acrylate double bonds, epoxy groups) or the MIR region (e.g., thiol signal). Moreover, an integrated Peltier element and external heating hood enable the characterization of photopolymerization reactions at elevated temperatures, which also widens the window of application to resins that are waxy or solid at ambient conditions. By switching from water to heavy water, the chemical conversion during photopolymerization of hydrogel precursor formulations can also be examined. Moreover, this device could also represent an analytical tool for a variety of thermally and redox initiated systems.
In recent days, additive manufacturing technologies (AMT) based on photopolymerization have also found application in tissue engineering. Although acrylates and methacrylates have excellent photoreactivity and afford photopolymers with good mechanical properties, their cytotoxicity and degradation products disqualify them from medical use. Within this work, (meth)acrylate‐based monomers were replaced by vinyl esters with exceptional low cytotoxicity. The main focus of this paper lies on the determination of the photoreactivity and investigations concerning mechanical properties and degradation behavior of the new materials. Tested monomers provide sufficient photoreactivity for processing by AMT. Mechanical properties similar to natural bone could be obtained by adding suitable fillers like hydroxylapatite (HA). The right ratio of hydrophobic and hydrophilic monomers allows the tuning of the degradation behavior. Finally, with the optimum formulation, cellular 3D structures were built using digital light processing. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.