Monomers for radical photopolymerization based on vinyl esters (VEs) have recently been identified as suitable alternatives to (meth)acrylates on account of their low irritancy and cytotoxicity. The drawback of most VEs with abstractable hydrogens is their relatively low reactivity compared with (meth)acrylates. Within this article, we proved by photo-differential scanning calorimetry measurements and real-time Fourier transform infrared spectroscopy that the thiol-ene concept is able to improve the photoreactivity of these VEs to a large extent to a level between those of acrylates and methacrylates.Other VEs have now a reactivity of at least the level of similar acrylates. Mechanical properties as determined by Dynamic Mechanical Analysis and Charpy impact tests showed significant toughening of these materials. Furthermore, we were able to confirm low toxicity of all components by osteoblast cell culture experiments.
Fullerenes are shown to be efficient voltage-stabilizers for polyethylene, i.e., additives that increase the dielectric strength of the insulation material. Such compounds are highly sought-after because their use in power-cable insulation may considerably enhance the transmission efficiency of tomorrow's power grids. On a molal basis, fullerenes are the most efficient voltage stabilizers reported to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.