A novel higher order finite-element technique based on generalized curvilinear hexahedra with hierarchical curl-conforming polynomial vector basis functions is proposed for microwave modeling. The finite elements are implemented for geometrical orders from 1 to 4 and field-approximation orders from 1 to 10 in the same Galerkin-type finite-element method and applied to eigenvalue analysis of arbitrary electromagnetic cavities. Individual curved hexahedra in the model can be as large as approximately 2 2 2 , which is 20 times the traditional low-order modeling discretization limit of 10 in each dimension. The examples show excellent flexibility and efficiency of the higher order (more precisely, low-to-high order) method at modeling of both field variation and geometrical curvature, and its excellent properties in the context of-refinement of solutions, for models with both flat and curved surfaces. The reduction in the number of unknowns is by an order of magnitude when compared to low-order solutions.
Analysis of drop size distributions (DSD) measured by collocated Meteorological Particle Spectrometer (MPS) and a third-generation, low-profile, 2D-video disdrometer (2DVD) are presented. Two events from two different regions (Greeley, Colorado, and Huntsville, Alabama) are analyzed. While the MPS, with its 50-μm resolution, enabled measurements of small drops, typically for drop diameters below about 1.1 mm, the 2DVD provided accurate measurements for drop diameters above 0.7 mm. Drop concentrations in the 0.7–1.1-mm overlap region were found to be in excellent agreement between the two instruments. Examination of the combined spectra clearly reveals a drizzle mode and a precipitation mode. The combined spectra were analyzed in terms of the DSD parameters, namely, the normalized intercept parameter NW, the mass-weighted mean diameter Dm, and the standard deviation of mass spectrum σM. The inclusion of small drops significantly affected the NW and the ratio σM/Dm toward higher values relative to using the 2DVD-based spectra alone. For each of the two events, polarimetric radar data were used to characterize the variation of radar-measured reflectivity Zh and differential reflectivity Zdr with Dm from the combined spectra. In the Greeley event, this variation at S band was well captured for small values of Dm (<0.5 mm) where measured Zdr tended to 0 dB but Zh showed a noticeable decrease with decreasing Dm. For the Huntsville event, an overpass of the Global Precipitation Measurement mission Core Observatory satellite enabled comparison of satellite-based dual-frequency radar retrievals of Dm with ground-based DSD measurements. Small differences were found between the satellite-based radar retrievals and disdrometers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.