The blue Mg induced 2.8 eV photoluminescence (PL) band in metalorganic chemical vapor deposition grown GaN has been studied in a large number of samples with varying Mg content. It emerges near a Mg concentration of 1x10(exp 19) cm(-3) and at higher concentrations dominates the room temperature PL spectrum. The excitation power dependence of the 2.8 eV band provides convincing evidence for its donor-acceptor (D-A) pair recombination character. It is suggested that the acceptor A is isolated Mg(Ga) while the spatially separated, deep donor (430 meV) D is attributed to a nearest-neighbor associate of a Mg(Ga) acceptor with a nitrogen vacancy, formed by self-compensation
The efficient room-temperature photoluminescence bands of wurtzite GaN, which are peaked in the red (1.8 eV), the yellow (2.2 eV), and the blue (2.8 eV) spectral range, have been studied as a function of doping (species and concentration) and excitation power density (PD). It is shown that the yellow and the blue band are induced by Si and Mg doping, respectively, while codoping with Si and Mg generates the red band. At high-doping levels, the yellow and the blue band reveal strong peak shifts to higher energy with increasing PD providing very strong evidence for their distant donor-acceptor (DA) pair recombination character. The deep centers involved in DA recombination having electrical activity opposite to that of the shallow level of the dopant, are suggested to arise from self-compensation and to be vacancy-dopant associates. Self-compensation is found to be weak in the case of Si doping, but significant for Mg doping. A recombination model is presented, which accounts for the ess ential properties of all three bands in deliberately doped GaN. These results also suggest that the yellow and the blue bands in nominally undoped GaN arise from distant DA pairs involving residual Si and Mg impurities, respectively, as well as their respective vacancy associates
We investigated the response of wurzite GaN thin films to energetic ion irradiation. Both swift heavy ions (92 MeV Xe 23+ , 23 MeV I 6+ ) and highly charged ions (100 keV Xe 40+ ) were used. After irradiation, the samples were investigated using atomic force microscopy, grazing incidence small angle X-ray scattering, Rutherford backscattering spectroscopy in channelling orientation and time of flight elastic recoil detection analysis. Only grazing incidence swift heavy ion irradiation induced changes on the surface of the GaN, when the appearance of nanoholes is accompanied by a notable loss of nitrogen. The results are discussed in the framework of the thermal spike model.
The temperature and excitation power dependence of a bound exciton photoluminescence line S with a localization energy Q=11.5 meV has been studied in undoped and moderately Mg-doped wurtzite GaN of high resistivity. The data provide strong evidence that line S is due to recombination of excitons bound to ionized shallow donors. The consistency of this assignment with theoretical predictions is demonstrated
Oxygen doped GaN has been grown by metalorganic chemical vapor deposition using N2O as oxygen dopant source. The layers were deposited on 2" sapphire substrates from trimethylgallium and especially dried ammonia using nitrogen (N2) as carrier gas. Prior to the growth of the films, an AlN nucleation layer with a thickness of about 300 AA was grown using trimethylaluminum. The films were deposited at 1085 degrees C at a growth rate of 1.0 mu m/h and showed a specular, mirrorlike surface. Not intentionally doped layers have high resistivity (>20 kW/square). The gas phase concentration of the N2O was varied between 25 and 400 ppm with respect to the total gas volume. The doped layers were n-type with carrier concentrations in the range of 4*1016 cm-3 to 4*1018 cm-3 as measured by Hall effect. The observed carrier concentration increased with increasing N2O concentration. Low temperature photoluminescence experiments performed on the doped layers revealed besides free A and B exciton emissi on an exciton bound to a shallow donor. With increasing N2O concentration in the gas phase, the intensity of the donor bound exciton increased relative to that of the free excitons. These observations indicate that oxygen behaves as a shallow donor in GaN. This interpretation is supported by covalent radius and electronegativity arguments
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.