Within the past few decades, major losses of seagrass habitats in coastal waters impacted by cultural eutrophication have been documented worldwide. In confronting a pressing need to improve the management and protection of seagrass meadows, surprisingly little is known about the basic nutritional physiology of these critical habitat species, or the physiological mechanisms that control their responses to N and P gradients. The limited available evidence to date already has revealed, for some seagrass species such as the north temperate dominant Zostera marina, unusual responses to nutrient enrichment in comparison to other vascular plants. Seagrasses derive N and P from sediment pore water (especially ammonium) and the water column (most nitrate). The importance of leaves versus roots in nutrient acquisition depends, in part, on the enrichment conditions. For example, a shift from reliance on sediment pore water to increased reliance on the overlying water for N and P supplies has been observed under progressive water-column nutrient enrichment. Seagrasses may be N-limited in nutrient-poor waters with sandy or (less so) organic sediments, and P-limited in carbonate sediments. On the basis of data from few species, seagrasses enrichment (as low as 3.5-7 mM NO , 3-5 weeks), which is actively taken up without apparent 3 product feedback inhibition. Inhibition by elevated nitrate has also been reported, with description of the underlying physiological mechanisms, in certain macroalgae and microalgae. In Z. marina, this effect has been related to the high, sustained energy demands of nitrate uptake, and to inducement of internal carbon limitation by the concomitant 'carbon drain' into amino acid assimilation. In contrast, nitrate enrichment can stimulate growth of Z. marina when the sediment, rather than the water column, is the source. Because seagrass species have shown considerable variation in nutritional response, inferences about one well-studied species, from one geographic location, should not be applied a priori to that species in other regions or to seagrasses in general.Most of the available information has been obtained from study of a few species, and the basic nutritional physiology of many seagrasses remains to be examined and compared across geographic regions. Nonetheless, the relatively recent gains in general understanding about the physiological responses of some seagrass species to nutrient gradients already have proven valuable in both basic and applied research. For example, physiological variables such as tissue C:N:P content have begun to be developed as integrative indicators of nutrient conditions and anthropogenic nutrient enrichment. To strengthen insights for management strategies to optimize seagrass survival in coastal waters adjacent to exponential human population growth and associated nutrient inputs, additional emphasis is critically needed to assess the role of variable interactions-among inorganic as well as organic N, P and C, environmental factors such as temperature, ...