Freshwater wetlands are fundamentally tied to hydrology as they are often found along the boundaries between terrestrial uplands and open waters. Although wetland systems are frequently prone to extended periods of flooding and exposure, the degree of water deprivation may intensify during periods of low precipitation or drought. Therefore, the purpose of this study was to evaluate plant-water relations in five emergent macrophytes (Carex alata, Juncus effusus, Peltandra virginica, Saururus cernuus, and Justicia americana) to simulated drought conditions. Weekly evaluations of tissue water content and xylem water potential (free energy of water in xylem tissues) were conducted on plants grown in experimental microcosms over a 9-week period. Plant performance was also evaluated in each species by monitoring the changes in plant biomass, leaf area, and survival. The results indicate that J. effusus and P. virginica performed better in both flooded and moderately dry conditions, and plants that maintained higher water content in water logged soils (i.e., J. americana) were less tolerant to drying conditions. This study also illustrates the importance of periodic water withdrawal on plant performance. In general, plants that were subjected to both flooded and dry conditions responded better physiologically than plants that were either continuously flooded or received extended droughts (C4 weeks). Therefore, provided the duration of water deficit is not extensive, short periods of water withdrawal can enhance the performance and water relations in some emergentwetland plant species.
Freshwater wetlands often exist as transitional areas between terrestrial uplands and deep open water. Thus they are fundamentally sensitive to changes in hydrology. Some of the more dramatic changes in wetland water supply occur during extensive droughts, where both precipitation and soil water table markedly decline. While it is generally understood that herbaceous wetland macrophytes are more sensitive to decreased water availability than wetland trees, the degree of susceptibility among wetland herbs remains relatively unexplored. Therefore, the purpose of this study was to evaluate plant growth responses of five herbaceous wetland species (monocots Carex alata, Juncus effusus, and Peltandra virginica, and dicots Saururus cernuus, and Justicia americana) to simulated drought conditions (up to 6 weeks in a 1-in-25-year precipitation low with receding soil water tables). Of the five species studied, three (J. americana, S. cernuus, and J. effusus) had no survivors after 6 weeks of simulated drought. J. americana, appeared to be the most sensitive to water deprivation with a 67% decrease in plant phytomass and an 85% decrease in leaf area with only 2 weeks of drought, and complete mortality after 3 weeks. While P. virginica also had significant decreases in biomass, leaf area, relative growth rate (RGR) and unit leaf rate (ULR), in as little as 2 weeks of drought, no noticeable decreases in survival were observed. In contrast, when J. effusus experienced between 2-and 4-weeks of water deprivation, there were significant increases in RGR, ULR, phytomass, leaf area, and shoot:root ratios. S. cernuus and C. alata remained relatively unaffected following 4 weeks of drought; however by the fifth week, there were significant declines in leaf area for both species. In general, this study provides experimental evidence on how herbaceous macrophytes grow under drought conditions. This basic understanding is fundamental if we are to develop better working models on how wetlands will respond to changing environmental conditions that lead to decreased water supply.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.