Abstract. Vegetation plays a key role in the hydrological and biogeochemical cycles. It can influence soil water fluxes and transport, which are critical for chemical weathering and soil development. In this study, we investigated soil water balance and solute fluxes in two soil profiles with different vegetation types (cushion-forming plants vs. tussock grasses) in the high Ecuadorian Andes by measuring soil water content, flux, and solute concentrations and by modeling soil hydrology. We also analyzed the role of soil water balance in soil chemical weathering. The influence of vegetation on soil water balance and solute fluxes is restricted to the A horizon. Evapotranspiration is 1.7 times higher and deep drainage 3 times lower under cushion-forming plants than under tussock grass. Likewise, cushions transmit about 2-fold less water from the A to lower horizons. This is attributed to the higher soil water retention and saturated hydraulic conductivity associated with a shallower and coarser root system. Under cushion-forming plants, dissolved organic carbon (DOC) and metals (Al, Fe) are mobilized in the A horizon. Solute fluxes that can be related to plant nutrient uptake (Mg, Ca, K) decline with depth, as expected from biocycling of plant nutrients. Dissolved silica and bicarbonate are minimally influenced by vegetation and represent the largest contributions of solute fluxes. Soil chemical weathering is higher and constant with depth below tussock grasses but lower and declining with depth under cushion-forming plants. This difference in soil weathering is attributed mainly to the water fluxes. Our findings reveal that vegetation can modify soil properties in the uppermost horizon, altering the water balance, solute fluxes, and chemical weathering throughout the soil profile.
Traditional hydrometric data combined with environmental tracers such as water stable isotopes contributes to improve the understanding of catchment hydrology. Nevertheless, the application of isotopic tracers in headwater catchments of the tropical Andes with deep soils and permeable parent material influenced by recent volcanism remains limited. In this study, the stable isotopic composition of precipitation, soil water, wetlands, and streamflow was studied to provide insights into the hydrology of a small tropical Andean catchment with deep and permeable volcanic soils, ash layers, and fractured bedrock resulting from Holocene volcanic activity. Although local precipitation forms under isotopic equilibrium conditions, the stable isotopic composition of precipitation is influenced by atmospheric moisture recycling processes. The spatial and temporal variability of isotopic signals and the analysis of inverse transit time proxies (ITTPs) of surface (streamflow) and subsurface (soil and wetlands) waters indicate that vertical flow paths through the deep volcanic ash soils are dominant across the catchment. The strongly damped isotopic composition of these waters points to high soil and wetlands water storage, increasing the transit time or age of stream water in the hydrological system. These findings indicate that water mobilizing through subsurface flow paths–that is, volcanic soils, ash layers, and cracks in the fractured bedrock resulting from Holocene volcanism–is the main contributor to streamflow generation. Comparison with previously published work from Andean catchments and other volcanic areas shows the diversity of hydrological conditions that can be found as a result of pedological and lithological differences shaped by volcanic activity. Therefore, site‐specific strategies may be needed to improve water resources management.
<p>The high tropical Andes ecosystem, known as p&#225;ramo, provides important hydrological services to densely populated areas in the Andean region. In order to manage these services sustainably, it is crucial to understand the biotic and abiotic processes that control both water quality and fluxes. Recent research in the p&#225;ramo highlights a knowledge gap regarding the role played by soil-vegetation interactions in controlling soil-water processes and resulting water and solute fluxes.</p><p>Here, we determine the hydrological and geochemical fluxes in four soil profiles in the p&#225;ramo of the Antisana&#180;s water conservation area in northern Ecuador. Water fluxes were measured biweekly with field fluxmeters in the hydrological year Apr/2019- Mar/2020 under two contrasting vegetation types: tussock-like grass (TU) and cushion-forming plants (CU). Soil solution was collected in parallel with wick samplers and suction caps for assessing the concentrations of dissolved cations, anions and organic carbon (DOC). In addition, soil moisture was measured continuously in the upper meter of the soil profile, i.e. first three horizons (A, 2A and 2BC), using water content reflectometers. The vertical water flux in the upper meter of each soil profile was simulated using the 1D HYDRUS model. We carried out a Sobol analysis to identify sensitive soil hydraulic parameters. We then derived water fluxes by inverse modeling, based on the measured soil moisture. We validated the calculated water fluxes using the fluxmeter data. Solute fluxes were estimated by combining the water fluxes and the soil solution compositions.</p><p>Our preliminary results suggest that water fluxes and DOC concentration vary under different vegetation types. The fluxmeter data from the 2A horizon indicates that the cumulative water flux under TU (2.8 - 5.7 l) was larger than under CU (0.8 &#8211; 1.1 l) during the dry season (Aug-Sep and Dec-Jan). However, the opposite trend was observed in the wet season for maximum water fluxes. Moreover, the DOC concentration in the uppermost horizon was higher under CU (47.3 &#177;2.2 mg l<sup>-1</sup>) than under TU (3.1 &#177;0.2 mg l<sup>-1</sup>) vegetation during the monitoring period. We associate the water and solute responses under different vegetation types to the contrasting soil hydro-physical and chemical properties (e.g., saturated hydraulic conductivity and organic carbon content) in the uppermost soil horizon. Our study illustrates the existence of a spatial association between vegetation types, water fluxes and solute concentrations in Antisana&#180;s water conservation area. By modelling the hydrological balance of the upper meter of the soil mantle, the water and solute fluxes will be estimated for soils with different vegetation cover.</p><p>&#160;</p>
Abstract. Vegetation plays a key role in the hydrological and biogeochemical cycles. It can influence soil water fluxes and transport which are critical for chemical weathering and soil development. In this study, we investigated soil water balance and solute fluxes in two soil profiles with different vegetation types (cushion-forming plants vs. tussock grasses) by measuring soil water content, flux, and solute concentrations and by modeling soil hydrology. We also analyzed the role of soil water balance in soil chemical weathering. The influence of vegetation on soil water balance and solute fluxes is restricted to the A horizon. Evapotranspiration is 1.7 times higher and deep drainage is 3 times lower under cushion-forming plants than under tussock grass. Likewise, cushions transmit almost threefold less water from the A to lower horizons. This is attributed to the vertical distribution of soil properties associated with the root systems. Under cushion-forming plants, DOC and metals (Al, Fe) are mobilized in the A horizon. Solute fluxes that can be related to plant nutrient uptake (Mg, Ca, K) decline with depth as expected from bio-cycling of plant nutrients. Dissolved silica and bicarbonate are minimally influenced by vegetation and represent the largest contributions of solute fluxes. Soil chemical weathering is higher and constant with depth below tussock grasses; while lower and declining with depth under cushion-forming plants. This difference in soil weathering is attributed mainly to the water fluxes. Our findings reveal that vegetation can modify soil properties in the uppermost horizon altering the water balance, solute fluxes, and chemical weathering throughout the soil profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.