Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are
Observed differences in physiological performance among eight fern species reflected niche partitioning in water utilization and habitat preference associated with distinct phenological traits. We predict differential survival among fern species as future drought events in California intensify, with desiccation-tolerant resurrection ferns being the most resistant.
The reestablishment and enhancement of plant diversity is typically a priority for restoration practitioners. Since diversity and stability can be affected by the magnitude to which randomness drives community dynamics, modifying randomness (via habitat heterogeneity) could provide utility for vegetation managers. We investigated the value of using strip seeding to manipulate the magnitude to which randomness structures plant communities across a grassland in Davis, California. Five years after restoring portions of a degraded site (0, 33, 50, 66, and 100% of an area) to create patches of seeded and unseeded strips, we assessed the amount of Jaccard dissimilarity across quadrats within strips and estimated the magnitude to which randomness contributed to community assembly (termed the nugget). We found higher nuggets in the 66 and 33% seeding treatment levels compared to the 0, 50, and 100% seeding treatment levels. In the 33 and 66% level of the seeding treatment, we also found that unseeded strips, which are regularly exposed to random events of dispersal from seeded strips, had a higher nugget than seeded strips. This work suggests that strategic seeding techniques that enhance habitat heterogeneity can increase the role of randomness in community dynamics. Strip seeding strategies appear to provide utility as a tool to indirectly enhance diversity across a degraded site.
Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, yet are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely-sensed biomass products and are undersampled by in-situ monitoring. Current global change threats emphasise the need for new tools to capture biomass change in non-forest ecosystems at appropriate scales. Here we assess whether canopy height inferred from drone photogrammetry allows the estimation of aboveground biomass (AGB) across low-stature plant species sampled through a global site network. We found mean canopy height is strongly predictive of AGB across species, demonstrating standardised photogrammetric approaches are generalisable across growth forms and environmental settings. Biomass per-unit-of-height was similar within, but different among, plant functional types. We find drone-based photogrammetry allows for monitoring of AGB across large spatial extents and can advance understanding of understudied and vulnerable non-forested ecosystems across the globe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.