Opportunistic diversification has allowed ferns to radiate into epiphytic niches in angiosperm dominated landscapes. However, our understanding of how ecophysiological function allowed establishment in the canopy and the potential transitionary role of the hemi-epiphytic life form remain unclear. Here, we surveyed 39 fern species in Costa Rican tropical forests to explore epiphytic trait divergence in a phylogenetic context. We examined leaf responses to water deficits in terrestrial, hemi-epiphytic and epiphytic ferns and related these findings to functional traits that regulate leaf water status. Epiphytic ferns had reduced xylem area (−63%), shorter stipe lengths (−56%), thicker laminae (+41%) and reduced stomatal density (−46%) compared to terrestrial ferns. Epiphytic ferns exhibited similar turgor loss points, higher osmotic potential at saturation and lower tissue capacitance after turgor loss than terrestrial ferns. Overall, hemi-epiphytic ferns exhibited traits that share characteristics of both terrestrial and epiphytic species. Our findings clearly demonstrate the prevalence of water conservatism in both epiphytic and hemi-epiphytic ferns, via selection for anatomical and structural traits that avoid leaf water stress. Even with likely evolutionarily constrained physiological function, adaptations for drought avoidance have allowed epiphytic ferns to successfully endure the stresses of the canopy habitat.
Observed differences in physiological performance among eight fern species reflected niche partitioning in water utilization and habitat preference associated with distinct phenological traits. We predict differential survival among fern species as future drought events in California intensify, with desiccation-tolerant resurrection ferns being the most resistant.
Summary
Desiccation‐tolerant (DT) plants can dry past −100 MPa and subsequently recover function upon rehydration. Vascular DT plants face the unique challenges of desiccating and rehydrating complex tissues without causing structural damage. However, these dynamics have not been studied in intact DT plants.
We used high resolution micro‐computed tomography (microCT), light microscopy, and fluorescence microscopy to characterize the dynamics of tissue desiccation and rehydration in petioles (stipes) of intact DT ferns.
During desiccation, xylem conduits in stipes embolized before cellular dehydration of living tissues within the vascular cylinder. During resurrection, the chlorenchyma and phloem within the stipe vascular cylinder rehydrated before xylem refilling. We identified unique stipe traits that may facilitate desiccation and resurrection of the vascular system, including xylem conduits containing pectin (which may confer flexibility and wettability); chloroplasts within the vascular cylinder; and an endodermal layer impregnated with hydrophobic substances that impede apoplastic leakage while facilitating the upward flow of water within the vascular cylinder.
Resurrection ferns are a novel system for studying extreme dehydration recovery and embolism repair in the petioles of intact plants. The unique anatomical traits identified here may contribute to the spatial and temporal dynamics of water movement observed during desiccation and resurrection.
Desiccation-tolerant (DT) organisms can lose nearly all their water without dying. Desiccation tolerance allows organisms to survive in a nearly completely dehydrated, dormant state. At the cellular level, sugars and proteins stabilize cellular components and protect them from oxidative damage. However, there are few studies of the dynamics and drivers of whole-plant recovery in vascular DT plants. In vascular DT plants, whole-plant desiccation recovery (resurrection) depends not only on cellular rehydration, but also on the recovery of organs with unequal access to water. In this study, in situ natural and artificial irrigation experiments revealed the dynamics of desiccation recovery in two DT fern species. Organ-specific irrigation experiments revealed that the entire plant resurrected when water was supplied to roots, but leaf hydration alone (foliar water uptake) was insufficient to rehydrate the stele and roots. In both species, pressure applied to petioles of excised desiccated fronds resurrected distal leaf tissue, while capillarity alone was insufficient to resurrect distal pinnules. Upon rehydration, sucrose levels in the rhizome and stele dropped dramatically as starch levels rose, consistent with the role of accumulated sucrose as a desiccation protectant. These findings provide insight into traits that facilitate desiccation recovery in dryland ferns associated with chaparral vegetation of southern California.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.