We investigated the effect of nano‐ and microplastics on the freshwater duckweed species Spirodela polyrhiza, a vascular plant. S. polyrhiza was exposed for 120 h to concentrations ranging from 102 to 106 particles·mL−1. We assessed effects on growth and chlorophyll production, and explored adsorption and absorption by way of confocal microscopy. For both nano‐ and microsized particles, no concentration‐dependent effects on growth were found (expressed as fresh weight, frond, and root sizes). In addition, chlorophyll concentrations were not significantly affected. Confocal microscopy indicated that nanosized plastic particles adsorbed externally to the duckweed, especially to the roots. Internalized plastic particles could not be detected. Nevertheless, given their important role in ecosystems as a food source for a range of organisms, the adsorption of plastic particles to S. polyrhiza roots as detected in this study can result in the transfer of plastic particles to diverse herbivorous species within the ecosystem.
Limnetic aggregates from a turbid delta lake with low dissolved nutrient availability were studied in relation to light and dissolved nutrient availability. Quick light‐attenuation restricts the euphotic zone to the top surface layer of the water column, whereas mineralization processes in the sediment specifically provide dissolved nutrients near the lakebed. This suggests neither the pelagic nor the benthic zone provides the combination of resources required for microalgal growth. Nutrient mineralization in aggregates could bridge this apparent spatial gap in light and nutrients by providing dissolved nutrients in the euphotic zone, promoting microalgal growth. To explore this, aggregates obtained from turbid and phosphate‐limited lake Markermeer (The Netherlands) were exposed in the laboratory to phosphate‐replete and phosphate depleted conditions, at high‐light and low‐light availability. Confocal microscopy revealed that aggregates exhibited alkaline phosphatase activity and contained microalgae, other microbes, and extracellular polymeric substances. The spatial distribution of the phosphatase activity in aggregates largely matched that of chlorophyll a (Chl a)‐lacking microbes, suggesting that these microbes were responsible for the activity. Colorimetric quantification revealed that aggregates exhibited over 1.9‐fold higher phosphatase activity than surrounding water. Two‐day exposure to different light and phosphate availabilities affected aggregate composition. Phosphate depleted conditions resulted in more Chl a‐lacking microbes and more phosphatase activity than phosphate‐replete conditions. Low‐light intensity resulted in higher abundance of extracellular polymeric substances than high‐light intensity. In contrast to aggregates from deep stratified systems, Markermeer aggregates were not enriched with dissolved phosphorus. These results suggest that P‐cycling in aggregates differs between shallow turbid and deep stratified ecosystems.
Ingested nanomaterials are exposed to many metabolites
that are
produced, modified, or regulated by members of the enteric microbiota.
The adsorption of these metabolites potentially affects the identity,
fate, and biodistribution of nanomaterials passing the gastrointestinal
tract. Here, we explore these interactions using in silico methods,
focusing on a concise overview of 170 unique enteric microbial metabolites
which we compiled from the literature. First, we construct quantitative
structure–activity relationship (QSAR) models to predict their
adsorption affinity to 13 metal nanomaterials, 5 carbon nanotubes,
and 1 fullerene. The models could be applied to predict log
k
values for 60 metabolites and were particularly applicable
to ‘phenolic, benzoyl and phenyl derivatives’, ‘tryptophan
precursors and metabolites’, ‘short-chain fatty acids’,
and ‘choline metabolites’. The correlations of these
predictions to biological surface adsorption index descriptors indicated
that hydrophobicity-driven interactions contribute most to the overall
adsorption affinity, while hydrogen-bond interactions and polarity/polarizability-driven
interactions differentiate the affinity to metal and carbon nanomaterials.
Next, we use molecular dynamics (MD) simulations to obtain direct
molecular information for a selection of vitamins that could not be
assessed quantitatively using QSAR models. This showed how large and
flexible metabolites can gain stability on the nanomaterial surface
via conformational changes. Additionally, unconstrained MD simulations
provided excellent support for the main interaction types identified
by QSAR analysis. Combined, these results enable assessing the adsorption
affinity for many enteric microbial metabolites quantitatively and
support the qualitative assessment of an even larger set of complex
and biologically relevant microbial metabolites to carbon and metal
nanomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.