Many models of motor control emphasize the role of sensorimotor cortex in movement, principally through the projections corticospinal neurons (CSNs) make to the spinal cord. Additionally, CSNs possess expansive supraspinal axon collaterals, the functional organization of which is largely unknown. Using anatomical and electrophysiological circuit mapping techniques in the mouse, we reveal dorsolateral striatum as the preeminent target of CSN collateral innervation. We found this innervation is biased so that CSNs targeting different striatal pathways show biased targeting of spinal cord circuits. Contrary to more conventional perspectives, CSNs encode not only individual movements, but information related to the onset and offset of motor sequences. Furthermore, similar activity patterns are broadcast by CSN populations targeting different striatal circuits. Our results reveal a logic of coordinated connectivity between forebrain and spinal circuits, where separate CSN modules broadcast similarly complex information to downstream circuits, suggesting that differences in postsynaptic connectivity dictate motor specificity.
Misfolded tau proteins are characteristic of tauopathies, but the isoform composition of tau inclusions varies by tauopathy. Using aggregates of the longest tau isoform (containing four microtubule-binding repeats, 4-repeat tau), we recently described a direct mechanism of toxicity that involves exposure of the N-terminal phosphatase-activating domain (PAD) in tau, which triggers a signaling pathway that disrupts axonal transport. However, the impact of aggregation on PAD exposure for other tau isoforms was unexplored. Here, results from immunochemical assays indicate that aggregation-induced increases in PAD exposure and oligomerization are common features among all tau isoforms. The extent of PAD exposure and oligomerization was larger for tau aggregates composed of 4-repeat isoforms compared to those made of 3-repeat isoforms. Importantly, aggregates of all isoforms exhibited enough PAD exposure to significantly impair axonal transport in the squid axoplasm. We also show that PAD exposure and oligomerization represent common pathological characteristics in multiple tauopathies. Collectively, these results suggest a mechanism of toxicity common to each tau isoform that likely contributes to degeneration in different tauopathies.
SummarySensorimotor cortex controls movement in part through direct projections to the spinal cord. Here we show that these corticospinal neurons (CSNs) possess axon collaterals that innervate many supraspinal brain regions critical for motor control, most prominently the main input to the basal ganglia, the striatum. Corticospinal neurons that innervate the striatum form more synapses on D1-than D2-striatal projection neurons (SPNs). This biased innervation strategy corresponds to functionally distinct patterns of termination in spinal cord. CSNs are strongly driven during a striatum-dependent sequential forelimb behavior, and often represent high level movement features that are not linearly related to kinematic output. Copies of these activity patterns are relayed in a balanced fashion to both D1 and D2 projection pathways. These results reveal a circuit logic by which motor cortex corticospinal neurons relay both kinematic-related and unrelated signals to distinct striatal and spinal cord pathways, where postsynaptic connectivity ultimately dictates motor specificity.HighlightsCorticospinal neurons send axon collaterals most abundantly to the striatumBiases in striatal innervation correspond to biases in spinal innervationCSNs represent complex movement sequence informationCorollary motor sequence signals are relayed to both striatal projection pathwayseTOC BlurbNelson, A. et al. detail the organization of corticospinal neurons and their coordinated cell type-specific targets in the dorsolateral striatum and spinal cord. Corticospinal neurons encode both kinematic-related and unrelated signals during motor sequences, and relay this information in a balanced fashion to dichotomous striatal pathways.
Infant avoidance and aggression are promoted by activation of the Urocortin-3 expressing neurons of the perifornical area of hypothalamus (PeFAUcn3) in male and female mice. PeFAUcn3 neurons have been implicated in stress, and stress is known to reduce maternal behavior. We asked how chronic restraint stress (CRS) affects infant-directed behavior in virgin and lactating females and what role PeFAUcn3 neurons play in this process. Here we show that infant-directed behavior increases activity in the PeFAUcn3 neurons in virgin and lactating females. Chemogenetic inhibition of PeFAUcn3 neurons facilitates pup retrieval in virgin females. CRS reduces pup retrieval in virgin females and increases activity of PeFAUcn3 neurons, while CRS does not affect maternal behavior in mothers. Inhibition of PeFAUcn3 neurons blocks stress-induced deficits in pup-directed behavior in virgin females. Together, these data illustrate the critical role for PeFAUcn3 neuronal activity in mediating the impact of chronic stress on female infant-directed behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.