Tacrolimus (TAC), a potent immunosuppressive macrolide, has been investigated for ocular diseases due to promising results in the treatment of anterior and posterior segments eye diseases. Mesoporous and functionalized silica nanoparticles show potential as TAC delivery platforms owing to their interesting characteristic as large surface area, uniform pore size distribution, high pore volume, and excellent biocompatibility. The purpose of this study was to incorporate TAC in functionalized silica nanoparticles with 3-aminopropyltriethoxysilane (MSNAPTES) and investigate the safety and biocompatibility of the systems. The MSNAPTES and MSNAPTES TAC nanoparticles were characterized. The in vitro cytotoxicity of MSNAPTES and MSNAPTES load with TAC (MSNAPTES-TAC) in retinal pigment epithelial cells (ARPE-19) was determined, chorioallantoic membrane (CAM) assay model was used to investigate the in vivo biocompatibility, and safety of intravitreal injection was evaluated using clinical examination (assessment of intraocular pressure and indirect fundus ophthalmoscopy), electroretinographic (ERG) and histologic studies in rats’ eyes. The elemental analysis (CHN), thermogravimetric (TGA), photon correlation spectroscopy and Fourier transform infrared (FTIR) analysis confirmed the presence of functionalized agent and TAC in the MSNAPTES nanoparticles. TAC loading was estimated at 7% for the MSNAPTES TAC nanoparticles. MSNAPTES and MSNAPTES TAC did not present in vitro cytotoxicity. The drug delivery systems showed good biocompatibility on CAM. No retinal abnormalities, vitreous hemorrhage, neovascularization, retinal detachment, and optic nerve atrophy were observed during the in vivo study. Follow-up ERGs showed no changes in the function of the retina cells after 15 days of intravitreal injection, and histopathologic observations support these findings. In conclusion, MSNAPTES TAC was successfully synthesized, and physicochemical analyses confirmed the presence of TAC in the nanoparticles. In vitro and in vivo studies indicated that MSNAPTES TAC was safe to intravitreal administration. Taking into account the enormous potential of MSNAPTES to carry TAC, this platform could be a promising strategy for TAC ocular drug delivery in the treatment of eye diseases.
Rosmarinic acid, a plant-derived compound with antiangiogenic activity, can be applied for the treatment of ocular diseases related to neovascularization, such as diabetic retinopathy, macular edema, and age-related macular degeneration. These diseases represent the leading causes of blindness worldwide if they are not properly treated. Intravitreal devices allow for localized drug delivery to the posterior segment, increasing the drug bioavailability and promoting extended release, thus, reducing side effects and enhancing the patientʼs compliance to the treatment. In this work, rosmarinic acid-loaded poly lactic-co-glycolic acid intraocular implants were developed with a view for the treatment of ocular neovascularization. Physical-chemical, biocompatibility, and safety studies of the implants were carried out in vitro and in vivo as well as an evaluation of the antiangiogenic activity in a chorioallantoic membrane assay. Data obtained showed that
rosmarinic acid released from the implants was quantified in the vitreous for 6 weeks, while when it was in the solution formulation, after 24 h, no drug was found in the vitreous. The delivery device did not show any sign of toxicity after clinical evaluation and in electroretinographic findings. Histological analysis showed normal eye tissue. Rosmarinic acid released from implants reduced 30% of new vesselʼs formation. The intravitreal implant successfully allowed for the prolonged release of rosmarinic acid, was safe to rabbits eyes, and demonstrated activity in vessel reduction, thus demonstrating potential in preventing neovascularization in ophthalmic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.