Effects of a 10-week progressive strength training program composed of a mixture of exercises for increasing muscle mass, maximal peak force, and explosive strength (rapid force production) were examined in 8 young (YM) (29+/-5 yrs) and 10 old (OM) (61+/-4 yrs) men. Electromyographic activity, maximal bilateral isometric peak force, and maximal rate of force development (RFD) of the knee extensors, muscle cross-sectional area (CSA) of the quadriceps femoris (QF), muscle fiber proportion, and fiber areas of types I, IIa, IIb, and IIab of the vastus lateralis were evaluated. Maximal and explosive strength values remained unaltered in both groups during a 3-week control period with no training preceding the strength training. After the 10-week training period, maximal isometric peak force increased from 1311+/-123 N by 15.6% (p <.05) in YM and from 976+/-168 N by 16.5% (p <.01) in OM. The pretraining RFD values of 4049+/-791 N*s(-1) in YM and 2526+/-1197 N*s(-1) in OM remained unaltered. Both groups showed significant increases (p < .05) in the averaged maximum IEMGs of the vastus muscles. The CSA of the QF increased from 90.3+/-7.9 cm2 in YM by 12.2% (p <.05) and from 74.7+/-7.8 cm2 in OM by 8.5% (p <.001). No changes occurred in the muscle fiber distribution of type I during the training, whereas the proportion of subtype IIab increased from 2% to 6% (p < .05) in YM and that of type IIb decreased in both YM from 25% to 16% (p < .01) and in OM from 15% to 6% (p < .05). The mean fiber area of type I increased after the 10-week training in YM (p < .001) and OM (p < .05) as well as that of type IIa in both YM (p < .01) and OM (p < .01). The individual percentage values for type I fibers were inversely correlated with the individual changes recorded during the training in the muscle CSA of the QF (r=-.56, p < .05). The present results suggest that both neural adaptations and the capacity of the skeletal muscle to undergo training-induced hypertrophy even in older people explain the gains observed in maximal force in older men, while rapid force production capacity recorded during the isometric knee extension action remained unaltered during the present mixed strength training program.
The aim of this study was to investigate the kinematics, kinetics, and neural activation of the traditional bench press movement performed explosively and the explosive bench throw in which the barbell was projected from the hands. Seventeen male subjects completed three trials with a bar weight of 45% of the subject's previously determined 1RM. Performance was significantly higher during the throw movement compared to the press for average velocity, peak velocity, average force, average power, and peak power. Average muscle activity during the concentric phase for pectoralis major, anterior deltoid, triceps brachii, and biceps brachii was higher for the throw condition. It was concluded that performing traditional press movements rapidly with light loads does not create ideal loading conditions for the neuromuscular system with regard to explosive strength production, especially in the final stages of the movement, because ballistic weight loading conditions where the resistance was accelerated throughout the movement resulted in a greater velocity of movement, force output, and EMG activity.
Although explosive power in lower-body movements has been extensively studied, there is a paucity of research examining such movements in the upper body. This study aimed to investigate the influence of load and the stretch shortening cycle (SSC) on the kinematics, kinetics, and muscle activation that occurs during maximal effort throws. A total of 17 male subjects performed SSC and concentric only (CO) bench throws using loads of 15%, 30%, 45%, 60%, 75%, 90% and 100% of their previously determined one repetition maximum bench press. The displacement, velocity, acceleration, force and power output as well as the electromyogram (EMG) from pectoralis major, anterior deltoid, and triceps brachii were recorded for each throw. The results were compared using multivariate analysis of variance with repeated measures. A criterion alpha level of P < or = 0.05 was used. Similar force velocity power relationships were determined for this multijoint upper-body movement as has been found for isolated muscles, single joint movements, and vertical jumping. The highest power output was produced at the 30% [563 (104) W] and 45% [560 (86) W] loads during the SSC throws. Force output increased as a function of load; however, even the lighter loads resulted in considerable force due to the high accelerations produced. Average velocity, average and peak force, and average and peak power output were significantly higher for the SSC throws compared to the CO throws. However, peak velocity and height thrown were not potentiated by performing the pre-stretch because the duration and range of movement allowed the ability of the muscle to generate force at high shortening velocities to dominate the resulting throw. As such, explosive movements involving longer concentric actions than experienced during brief SSC movements may be limited by the ability of the muscle to produce force during fast contraction velocities.
The purpose of this study was to investigate the effect of a short-term Swiss ball training on core stability and running economy. Eighteen young male athletes (15.5 +/- 1.4 years; 62.5 +/- 4.7 kg; sigma9 skinfolds 78.9 +/- 28.2 mm; VO2max 55.3 +/- 5.7 ml.kg(-1).min(-1)) were divided into a control (n = 10) and experimental (n = 8) groups. Athletes were assessed before and after the training program for stature, body mass, core stability, electromyographic activity of the abdominal and back muscles, treadmill VO2max, running economy, and running posture. The experimental group performed 2 Swiss ball training sessions per week for 6 weeks. Data analysis revealed a significant effect of Swiss ball training on core stability in the experimental group (p < 0.05). No significant differences were observed for myoelectric activity of the abdominal and back muscles, treadmill VO2max, running economy, or running posture in either group. It appears Swiss ball training may positively affect core stability without concomitant improvements in physical performance in young athletes. Specificity of exercise selection should be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.