A facile C-H activation and functionalization of aromatic imines is presented using low-valent cobalt catalysts. Using Co(PMe3)4 as catalyst we have developed an efficient and simple protocol for the C-H/hydroarylation of alkynes with an anti selectivity. Deuterium-labeling experiments, DFT calculations coupled with the use of a well-defined catalyst have for the first time shed light on the elusive black box of cobalt catalyzed C-H functionalization.
A series of 3-aryl(pyrrolidin-1-yl)butanoic acids were synthesized using a diastereoselective route, via a rhodium catalyzed asymmetric 1,4-addition of arylboronic acids in the presence of ( R)-BINAP to a crotonate ester to provide the ( S) absolute configuration for the major product. A variety of aryl substituents including morpholine, pyrazole, triazole, imidazole, and cyclic ether were screened in cell adhesion assays for affinity against αβ, αβ, αβ, αβ, and αβ integrins. Numerous analogs with high affinity and selectivity for the αβ integrin were identified. The analog ( S)-3-(3-(3,5-dimethyl-1 H-pyrazol-1-yl)phenyl)-4-(( R)-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoic acid hydrochloride salt was found to have very high affinity for αβ integrin in a radioligand binding assay (p K = 11), a long dissociation half-life (7 h), very high solubility in saline at pH 7 (>71 mg/mL), and pharmacokinetic properties commensurate with inhaled dosing by nebulization. It was selected for further clinical investigation as a potential therapeutic agent for the treatment of idiopathic pulmonary fibrosis.
Herein, the use of a well-defined low-valent cobalt(I) catalyst [HCo(PMe3)4] capable of performing the highly regio- and stereoselective hydrosilylation of internal alkynes is reported. The reaction can be applied to a variety of hydrosilanes, symmetrical and unsymmetrical alkynes, giving in many cases a single hydrosilylation isomer. Experimental and theoretical studies suggest the key step to be a hydro-cobaltation and that the reaction proceeds through a classical Chalk-Harrod mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.