Large DNA viruses defend against hostile assault executed by the host immune system by producing an array of gene products that systematically sabotage key components of the inflammatory response. Poxviruses target many of the primary mediators of innate immunity including interferons, tumor necrosis factors, interleukins, complement, and chemokines. Poxviruses also manipulate a variety of intracellular signal transduction pathways such as the apoptotic response. Many of the poxvirus genes that disrupt these pathways have been hijacked directly from the host immune system, while others have demonstrated no clear resemblance to any known host genes. Nonetheless, the immunological targets and the diversity of strategies used by poxviruses to disrupt these host pathways have provided important insights into diverse aspects of immunology, virology, and inflammation. Furthermore, because of their anti-inflammatory nature, many of these poxvirus proteins hold promise as potential therapeutic agents for acute or chronic inflammatory conditions.
Myxomatosis in European rabbits is a severely debilitating disease characterized by profound systemic cellular immunosuppression and a high rate of mortality. The causative agent, myxoma virus, is a member of the poxvirus family and prototype of the Leporipoxvirus genus. As a major step toward defining the genetic strategies by which the virus circumvents host antiviral responses, the genomic DNA sequence of myxoma virus, strain Lausanne, was determined. A total of 171 open reading frames were assigned to cover the 161.8-kb genome, including two copies each of the 12 genes that map within the 11.5-kb terminal inverted repeats. Database searches revealed a central core of approximately 120 kb that encodes more than 100 genes that exhibit close relationships to the conserved genes of members of other poxvirus genera. Open reading frames with predicted signal sequences, localization motifs, or homology to known proteins with immunomodulatory or host-range functions were examined more extensively for predicted features such as hydrophobic regions, nucleic acid binding domains, ankyrin repeats, serpin signatures, lectin domains. and structural cysteine spacings. As a result, several novel, potentially immunomodulatory proteins have been identified, including a family with multiple ankyrin-repeat domains, an OX-2 like member of the neural cell adhesion molecule family, a third myxoma serpin, a putative chemokine receptor fragment, two natural killer receptor-like species, and a variety of species with domains closely related to diverse host immune regulatory proteins. Coupled with the genomic sequencing of the related leporipoxvirus Shope fibroma virus, this work affirms the existence of a conserved complement of poxvirus-specific core genes and expands the growing repertoire of virus genes that confer the unique capacity of each poxvirus family member to counter the immune responses of the infected host.
Background & AimsSustained activation of the cytosolic calcium concentration induces injury to pancreatic acinar cells and necrosis. The calcium release–activated calcium modulator ORAI1 is the most abundant Ca2+ entry channel in pancreatic acinar cells; it sustains calcium overload in mice exposed to toxins that induce pancreatitis. We investigated the roles of ORAI1 in pancreatic acinar cell injury and the development of acute pancreatitis in mice.MethodsMouse and human acinar cells, as well as HEK 293 cells transfected to express human ORAI1 with human stromal interaction molecule 1, were hyperstimulated or incubated with human bile acid, thapsigargin, or cyclopiazonic acid to induce calcium entry. GSK-7975A or CM_128 were added to some cells, which were analyzed by confocal and video microscopy and patch clamp recordings. Acute pancreatitis was induced in C57BL/6J mice by ductal injection of taurolithocholic acid 3-sulfate or intravenous' administration of cerulein or ethanol and palmitoleic acid. Some mice then were given GSK-7975A or CM_128, which inhibit ORAI1, at different time points to assess local and systemic effects.ResultsGSK-7975A and CM_128 each separately inhibited toxin-induced activation of ORAI1 and/or activation of Ca2+ currents after Ca2+ release, in a concentration-dependent manner, in mouse and human pancreatic acinar cells (inhibition >90% of the levels observed in control cells). The ORAI1 inhibitors also prevented activation of the necrotic cell death pathway in mouse and human pancreatic acinar cells. GSK-7975A and CM_128 each inhibited all local and systemic features of acute pancreatitis in all 3 models, in dose- and time-dependent manners. The agents were significantly more effective, in a range of parameters, when given at 1 vs 6 hours after induction of pancreatitis.ConclusionsCytosolic calcium overload, mediated via ORAI1, contributes to the pathogenesis of acute pancreatitis. ORAI1 inhibitors might be developed for the treatment of patients with pancreatitis.
We demonstrate that the susceptibility of human cancer cells to be infected and killed by an oncolytic poxvirus, myxoma virus (MV), is related to the basal level of endogenous phosphorylated Akt. We further demonstrate that nonpermissive tumor cells will switch from resistant to susceptible for MV infection after expression of ectopically active Akt (Myr-Akt) and that permissive cancer cells can be rendered nonpermissive by blocking Akt activation with a dominant-negative inhibitor of Akt. Finally, the activation of Akt by MV involves the formation of a complex between the viral host range ankyrin-repeat protein, M-T5, and Akt. We conclude that the Akt pathway is a key restriction determinant for permissiveness of human cancer cells by MV.oncolytic virus ͉ poxvirus ͉ virus tropism ͉ PkB ͉ M-T5
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.