Gram-negative Legionella pneumophila produces a siderophore (legiobactin) that promotes lung infection. We previously determined that lbtA and lbtB are required for the synthesis and secretion of legiobactin. DNA sequence and reverse transcription-PCR (RT-PCR) analyses now reveal the presence of an iron-repressed gene (lbtU) directly upstream of the lbtAB-containing operon. In silico analysis predicted that LbtU is an outer membrane protein consisting of a 16-stranded transmembrane -barrel, multiple extracellular domains, and short periplasmic tails. Immunoblot analysis of cell fractions confirmed an outer membrane location for LbtU. Although replicating normally in standard media, lbtU mutants, like lbtA mutants, were impaired for growth on iron-depleted agar media. While producing typical levels of legiobactin, lbtU mutants were unable to use supplied legiobactin to stimulate growth on iron-depleted media and displayed an inability to take up iron. Complemented lbtU mutants behaved as the wild type did. The lbtU mutants were also impaired for infection in a legiobactin-dependent manner. Together, these data indicate that LbtU is involved in the uptake of legiobactin and, based upon its location, is most likely the Legionella siderophore receptor. The sequence and predicted two-dimensional (2D) and 3D structures of LbtU were distinct from those of all known siderophore receptors, which generally contain a 22-stranded -barrel and an extended N terminus that binds TonB in order to transduce energy from the inner membrane. This observation coupled with the fact that L. pneumophila does not encode TonB suggests that LbtU is a new type of receptor that participates in a form of iron uptake that is mechanistically distinct from the existing paradigm.
Type II protein secretion (T2S) by Legionella pneumophila is required for intracellular infection of host cells, including macrophages and the amoebae Acanthamoeba castellanii and Hartmannella vermiformis. Previous proteomic analysis revealed that T2S by L. pneumophila 130b mediates the export of >25 proteins, including several that appeared to be novel. Following confirmation that they are unlike known proteins, T2S substrates NttA, NttB, and LegP were targeted for mutation. nttA mutants were impaired for intracellular multiplication in A. castellanii but not H. vermiformis or macrophages, suggesting that novel exoproteins which are specific to Legionella are especially important for infection. Because the importance of NttA was host cell dependent, we examined a panel of T2S substrate mutants that had not been tested before in more than one amoeba. As a result, RNase SrnA, acyltransferase PlaC, and metalloprotease ProA all proved to be required for optimal intracellular multiplication in H. vermiformis but not A. castellanii. Further examination of an lspF mutant lacking the T2S apparatus documented that T2S is also critical for infection of the amoeba Naegleria lovaniensis. Mutants lacking SrnA, PlaC, or ProA, but not those deficient for NttA, were defective in N. lovaniensis. Based upon analysis of a double mutant lacking PlaC and ProA, the role of ProA in H. vermiformis was connected to its ability to activate PlaC, whereas in N. lovaniensis, ProA appeared to have multiple functions. Together, these data document that the T2S system exports multiple effectors, including a novel one, which contribute in different ways to the broad host range of L. pneumophila.
Background:The loss of McpC has been shown to reduce chemotaxis to 19 of the 20 amino acids. Results: McpC can directly bind 11 amino acids and indirectly sense four others. Conclusion: McpC can sense a variety of amino acids by using two discrete mechanisms. Significance: We elucidate the mechanisms by which a single receptor can sense a wide variety of ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.