The virulence of Legionella pneumophila is dependent upon its capacity to acquire iron. To identify genes involved in expression of its siderophore, we screened a mutagenized population of L. pneumophila for strains that were no longer able to rescue the growth of a ferrous transport mutant. However, an unusual mutant was obtained that displayed a strong inhibitory effect on the feoB mutant. Due to an insertion in hmgA that encodes homogentisate 1,2-dioxygenase, the mutant secreted increased levels of pyomelanin, the L. pneumophila pigment that is derived from secreted homogentisic acid (HGA). Thus, we hypothesized that L. pneumophilasecreted HGA-melanin has intrinsic ferric reductase activity, converting Fe 3؉ to Fe 2؉ , but that hyperpigmentation results in excessive reduction of iron that can, in the case of the feoB mutant, be inhibitory to growth. In support of this hypothesis, we demonstrated, for the first time, that wild-type L. pneumophila secretes ferric reductase activity. Moreover, whereas the hyperpigmented mutant had increased secreted activity, an lly mutant specifically impaired for pigment production lacked the activity. Compatible with the nature of HGA-melanins, the secreted ferric reductase activity was positively influenced by the amount of tyrosine in the growth medium, resistant to protease, acid precipitable, and heterogeneous in size. Together, these data represent the first demonstration of pyomelanin-mediated ferric reduction by a pathogenic bacterium.Legionella pneumophila, an occupant of natural and humanmade aquatic environments, is also the principal agent of Legionnaires' disease, a serious form of pneumonia that especially afflicts immunocompromised individuals (18,37,41). In water habitats, this gram-negative bacterium survives free, in biofilms, and as an intracellular parasite of protozoa (2, 62, 65); in the lung, it replicates in alveolar macrophages (67,93,95). Among the processes that promote L. pneumophila growth in both the environment and the mammalian host are Lsp type II protein secretion, Dot/Icm type IVB protein secretion, and the Lvh type IVA protein secretion system (8,19,27,57,84,105). Other notable surface features of L. pneumophila include flagella, type IV pili, the major outer membrane protein porin, the Hsp60 chaperonin, and the Mip peptidylproline isomerase (9,26,39,46,49,66,88,99,108). In addition to exporting proteins and enzymes onto its surface or into the extracellular milieu and/or host cells, L. pneumophila also secretes a siderophore (legiobactin) that promotes iron uptake (3). Iron acquisition has long been regarded as a key aspect of L. pneumophila growth, intracellular infection, and virulence (12,17,82). Besides legiobactin, we have uncovered both FeoB ferrous iron transport, which is critical for bacterial growth in host cells and the lung, as well as the ccm, frgA, hbp, iraAB, and tat genes, which also promote L. pneumophila growth under low-iron conditions (20,47,68,73,81,86,87,106,107). The discovery of legiobactin has drawn further attention...
Gram-negative Legionella pneumophila produces a siderophore (legiobactin) that promotes lung infection. We previously determined that lbtA and lbtB are required for the synthesis and secretion of legiobactin. DNA sequence and reverse transcription-PCR (RT-PCR) analyses now reveal the presence of an iron-repressed gene (lbtU) directly upstream of the lbtAB-containing operon. In silico analysis predicted that LbtU is an outer membrane protein consisting of a 16-stranded transmembrane -barrel, multiple extracellular domains, and short periplasmic tails. Immunoblot analysis of cell fractions confirmed an outer membrane location for LbtU. Although replicating normally in standard media, lbtU mutants, like lbtA mutants, were impaired for growth on iron-depleted agar media. While producing typical levels of legiobactin, lbtU mutants were unable to use supplied legiobactin to stimulate growth on iron-depleted media and displayed an inability to take up iron. Complemented lbtU mutants behaved as the wild type did. The lbtU mutants were also impaired for infection in a legiobactin-dependent manner. Together, these data indicate that LbtU is involved in the uptake of legiobactin and, based upon its location, is most likely the Legionella siderophore receptor. The sequence and predicted two-dimensional (2D) and 3D structures of LbtU were distinct from those of all known siderophore receptors, which generally contain a 22-stranded -barrel and an extended N terminus that binds TonB in order to transduce energy from the inner membrane. This observation coupled with the fact that L. pneumophila does not encode TonB suggests that LbtU is a new type of receptor that participates in a form of iron uptake that is mechanistically distinct from the existing paradigm.
Streptococcus mutans is the primary odontopathogen present in supragingival plaque and causes the oral disease known as dental caries. Colonization of the oral cavity by S. mutans requires the bacteria to adhere to the tooth surface and occurs by both sucrose-dependent and -independent mechanisms. Sucrose-independent adhesion of S. mutans in vitro has been shown to involve an ORF (ORF0317) encoding a homologue (39 %) to LytR, a regulator of autolysin activity in Bacillus subtilis. The protein encoded by ORF0317, LytR, belongs to the LytR/CpsA/Psr protein family. This family has a putative role in cell-wall structural maintenance, possibly through autolysin regulation. Autolysins have also been shown to be important in surface adhesion in Lactococcus lactis and in the pathogenic properties of Streptococcus pneumoniae. To investigate the role of autolysins in the adhesion and pathogenesis of S. mutans, a LytR mutant was constructed. The mutant grows in long chains, which may indicate a defect in cell division. Further experiments with the mutant strain show increased autolytic activity, indicating that LytR attenuates S. mutans autolytic activity, possibly through regulation of the expression of autolytic enzymes. No defect in cell-to-surface adherence or biofilm growth was seen in the LytR mutant. However, a connection between cell growth phase and transcription of lytR was found.
When cultured in a low-iron medium, Legionella pneumophila secretes a siderophore (legiobactin) that is both reactive in the chrome azurol S (CAS) assay and capable of stimulating the growth of iron-starved legionellae. Using anion-exchange high-pressure liquid chromatography (HPLC), we purified legiobactin from culture supernatants of a virulent strain of L. pneumophila. In the process, we detected the ferrated form of legiobactin as well as other CAS-reactive substances. Purified legiobactin had a yellow-gold color and absorbed primarily from 220 nm and below. In accordance, nuclear magnetic resonance spectroscopy revealed that legiobactin lacks aromatic carbons, and among the 13 aliphatics present, there were 3 carbonyls. When examined by HPLC, supernatants from L. pneumophila mutants inactivated for lbtA and lbtB completely lacked legiobactin, indicating that the LbtA and LbtB proteins are absolutely required for siderophore activity. Independently derived lbtA mutants, but not a complemented derivative, displayed a reduced ability to infect the lungs of A/J mice after intratracheal inoculation, indicating that legiobactin is required for optimal intrapulmonary survival by L. pneumophila. This defect, however, was not evident when the lbtA mutant and its parental strain were coinoculated into the lung, indicating that legiobactin secreted by the wild type can promote growth of the mutant in trans. Legiobactin mutants grew normally in murine lung macrophages and alveolar epithelial cells, suggesting that legiobactin promotes something other than intracellular infection of resident lung cells. Overall, these data represent the first documentation of a role for siderophore expression in the virulence of L. pneumophila.
Background Legionella pneumophila is a pathogenic bacterium that can cause Legionnaires’ disease and other non-pneumonic infections in humans. This bacterium produces a pyomelanin pigment, a potential virulence factor with ferric reductase activity. In this work, we have investigated the role of phenylalanine hydroxylase from L. pneumophila (lpPAH), the product of the phhA gene, in the synthesis of the pyomelanin pigment and the growth of the bacterium in defined compositions.Methodology/Principal FindingsComparative studies of wild-type and phhA mutant corroborate that lpPAH provides the excess tyrosine for pigment synthesis. phhA and letA (gacA) appear transcriptionally linked when bacteria were grown in buffered yeast extract medium at 37°C. phhA is expressed in L. pneumophila growing in macrophages. We also cloned and characterized lpPAH, which showed many characteristics of other PAHs studied so far, including Fe(II) requirement for activity. However, it also showed many particular properties such as dimerization, a high conformational thermal stability, with a midpoint denaturation temperature (T m) = 79±0.5°C, a high specific activity at 37°C (10.2±0.3 µmol L-Tyr/mg/min) and low affinity for the substrate (K m (L-Phe) = 735±50 µM.Conclusions/SignificancelpPAH has a major functional role in the synthesis of pyomelanin and promotes growth in low-tyrosine media. The high thermal stability of lpPAH might reflect the adaptation of the enzyme to withstand relatively high survival temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.