The development of the rapid, immunochromatographic test strip, also known as lateral flow immunoassay (LFIA), is the result of convergence of several threads that can be traced back to the 1950s. However, the concept of rapid diagnostic tests based on body fluids dated back significantly further. Documented evidence of saliva-and urine-based diagnostics existed several thousand years ago. The ancient Chinese were among the first documented users of saliva-based diagnostics. One widely used practice involved the use of saliva as a rapid determinant of guilt. In the ''Rice Test'', the inability to generate enough saliva to swallow a handful of rice was considered sufficient evidence for conviction. In this way, a rapid result was generated, but often with a poor prognosis for the subject. One of the earliest written records of a urine-based diagnostic test for pregnancy can be found in ancient Egyptian documents. There, a test was described whereby a potentially pregnant woman could urinate on wheat and barley seeds over the course of several days. The results: ''If Barley grows, it means a male child. If wheat grows, it means a female child. If both do not grow, she will not bear at all'' [1]. The interest in urine as a rapid diagnostic medium for a variety of ailments continued through the Middle Ages, with the advent of the so-called pissprophets in Europe, who claimed to be able to differentiate many different conditions from the color of urine. Along with many medical concepts of the time, success typically varied. Despite best efforts through the ages, it was not until the mid-twentieth century that the majority of rapid diagnostic methods gained real predictive value.The technical basis of the lateral flow immunoassay was derived from the latex agglutination assay, the first of which was developed in 1956 by Plotz and Singer [2]. In the same period, plate-based immunoassays were being developed.
Background Lateral flow immunoassays are widely used as diagnostic tests in many applications in human and other diagnostic areas. Assays for human applications have been commercially available since the 1980s and initially were primarily used to identify pregnancy by measuring human chorionic gonadotropin in urine and serum/plasma. Content The first infectious disease lateral flow assays were commercialized in the late 1980s identifying the presence of Group A Streptococcus pyogenes collected with throat swabs; innumerable other applications followed in the intervening decades. The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) pandemic has brought a vast number of new assays for which emergency use authorization (EUA) has been requested in the USA. These assays have been designed for detection of the antibody response to an infection and viral antigens in respiratory samples. In view of the onslaught of new tests, this review will focus on the use of rapid lateral flow immunoassays for infectious diseases. Principles of lateral flow assays and approaches to the production of high-sensitivity point-of-care assays are presented. Market trends, customer requirements, and future directions of lateral flow assay technology and its applications in the infectious disease diagnostic space are discussed. Summary Lateral flow immunoassays play an important role in infectious disease diagnostics. Advancements in technology have led to improved performance of these assays and acceptance by professional users. With the advent of the SARS-CoV-2 pandemic, the market has reached new levels requiring hundreds of millions of tests per year for professional and even home use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.