Summary We present new approaches to reservoir modeling and flow simulation that dispose of the pillar-grid concept that has persisted since reservoir simulation began. This results in significant improvements to the representation of multiscale geologic heterogeneity and the prediction of flow through that heterogeneity. The research builds on more than 20 years of development of innovative numerical methods in geophysical fluid mechanics, refined and modified to deal with the unique challenges associated with reservoir simulation. Geologic heterogeneities, whether structural, stratigraphic, sedimentologic, or diagenetic in origin, are represented as discrete volumes bounded by surfaces, without reference to a predefined grid. Petrophysical properties are uniform within the geologically defined rock volumes, rather than within grid cells. The resulting model is discretized for flow simulation by use of an unstructured, tetrahedral mesh that honors the architecture of the surfaces. This approach allows heterogeneity over multiple length-scales to be explicitly captured by use of fewer cells than conventional corner-point or unstructured grids. Multiphase flow is simulated by use of a novel mixed finite-element formulation centered on a new family of tetrahedral element types, PN(DG)–PN+1, which has a discontinuous Nth-order polynomial representation for velocity and a continuous (order N +1) representation for pressure. This method exactly represents Darcy-force balances on unstructured meshes and thus accurately calculates pressure, velocity, and saturation fields throughout the domain. Computational costs are reduced through dynamic adaptive-mesh optimization and efficient parallelization. Within each rock volume, the mesh coarsens and refines to capture key flow processes during a simulation, and also preserves the surface-based representation of geologic heterogeneity. Computational effort is thus focused on regions of the model where it is most required. After validating the approach against a set of benchmark problems, we demonstrate its capabilities by use of a number of test models that capture aspects of geologic heterogeneity that are difficult or impossible to simulate conventionally, without introducing unacceptably large numbers of cells or highly nonorthogonal grids with associated numerical errors. Our approach preserves key flow features associated with realistic geologic features that are typically lost. The approach may also be used to capture near-wellbore flow features such as coning, changes in surface geometry across multiple stochastic realizations, and, in future applications, geomechanical models with fracture propagation, opening, and closing.
We present new approaches to reservoir modeling and flow simulation that dispose of the pillar-grid concept that has persisted since reservoir simulation began. This results in significant improvements to the representation of multi-scale geological heterogeneity and the prediction of flow through that heterogeneity. The research builds on 20+ years of development of innovative numerical methods in geophysical fluid mechanics, refined and modified to deal with the unique challenges associated with reservoir simulation.Geological heterogeneities, whether structural, stratigraphic, sedimentologic or diagenetic in origin, are represented as discrete volumes bounded by surfaces, without reference to a pre-defined grid. Petrophysical properties are uniform within the geologically-defined rock volumes, rather than within grid-cells. The resulting model is discretized for flow simulation using an unstructured, tetrahedral mesh that honors the architecture of the surfaces. This approach allows heterogeneity over multiple length-scales to be explicitly captured using fewer cells than conventional corner-point or unstructured grids.Multiphase flow is simulated using a novel mixed finite element formulation centered on a new family of tetrahedral element types, P N (DG)-P N+1 , which has a discontinuous N th -order polynomial representation for velocity and a continuous (order N+1) representation for pressure. This method exactly represents Darcy force balances on unstructured meshes and thus accurately calculates pressure, velocity and saturation fields throughout the domain. Computational costs are reduced through (i) automatic mesh adaptivity in time and space and (ii) efficient parallelization. Within each rock volume, the mesh coarsens and refines to capture key flow processes, whilst preserving the surface-based representation of geological heterogeneity. Computational effort is thus focused on regions of the model where it is most required.Having validated the approach against a set of benchmark problems, we demonstrate its capabilities using a number of test models which capture aspects of geological heterogeneity that are difficult or impossible to simulate conventionally, without introducing unacceptably large numbers of cells or highly non-orthogonal grids with associated numerical errors. Our approach preserves key flow features associated with realistic geological features that are typically lost. The approach may also be used to capture near wellbore flow features such as coning, changes in surface geometry across multiple stochastic realizations and, in future applications, geomechanical models with fracture propagation, opening and closing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.