The alcoholic fermentation of jabuticaba berries (Plinia spp.) originates from a beverage with an intense taste and aroma, popularly known as jabuticaba wine (JW). In addition, polyphenols transferred from fruit peels to the final product turn this beverage into a promising source of bioactive agents. Here, the chemical profile and antioxidant potential of artisanal JW and derivative extracts were determined. Volatile organic compounds were determined by HS-SPME/GC-MS analysis. The wine was dried by lyophilization and subjected to liquid-liquid partitioning (water: ethyl acetate), resulting in three fractions (JWF1-3). ABTS•+ and DPPH•+ scavenging assays were performed to evaluate the antioxidant capacity. In addition, the extracts’ hematoprotective activity was evaluated against oxidative stress. Finally, the extracts were analyzed by LC-HRMS/MS. HS-SPME/GC-MS analysis highlighted 1,8-cineole as the main compound that contributes to the camphor/mint flavor. JWF2 and JWF3 displayed the highest antioxidant capacity. JWF2 stood out for preventing oxidative damage in red blood cells at 7.8 µg·mL−1 The maximal protection of ascorbic acid occurred at 8.8 µg·mL−1. The LC-HRMS/MS analysis allowed the annotation of seventeen compounds, most of them with recognized antioxidant activity such as anthocyanins, catechins, flavanols, and phenolic acids. The results presented herein reinforce JW as a pleasant beverage with bioactive potential.
Stingless bee honey (SBH) is gaining attention due to its nutritional, sensorial, and medicinal characteristics. This study focuses on the combination of physicochemical properties, antioxidant capacity, mineral profile, and mass spectrometry-based fingerprints, using a chemometric approach to differentiate SBH (n = 18) from three different Brazilian biogeographical zones (Caatinga, Cerrado, and Atlantic Forest). The physicochemical properties of SBH varied, resulting in a wide range of water activity, moisture, total soluble solids, pH, and total and free acidity. The Caatinga honey showed the highest and the lowest contents of phenolics and flavonoids, respectively. The antioxidant free-radical scavenging assays demonstrated that the Brazilian SBH has a high antioxidant potential. The mineral profile of honey samples from the Atlantic Forest revealed higher contents of Ca and Fe while the Cerrado and Caatinga honey showed the highest P contents. Partial Least-Squares Discriminant Analysis (PLS-DA) analysis separated the samples into three groups based on the biogeographical zones of harvest. The main separation factors between groups were the m/z 326 ion and the Fe content. Univariate analysis confirmed that Fe content is important for SBH discrimination. The present results indicate that the origin of SBH can be determined on the basis of mineral profile, especially Fe content.
Background Natural products are an important source of bioproducts with pharmacological properties. Here we investigate the components of leaves from M. tomentosa Benth. (Fritsch) (Chrysobalanaceae) and its effects on bacterial cell growth, biofilm production and macrophage activity. Methods The effect of the different leaf extracts against bacterial cell growth was performed using the microdilution method. The most active extract was analyzed by mass spectrometry, and its effect on bacterial biofilm production was evaluated on polystyrene plates. The extract effect on macrophage activity was tested in the RAW264.7 cell line, which was stimulated with different concentrations of the extract in the presence or absence of LPS. Results We show that the ethyl acetate (EtOAc) extract was the most effective against bacterial cell growth. EtOAc extract DI-ESI (-)MSn analysis showed the presence of a glycosylated flavonoid tentatively assigned as myricetin 3-O-xylosyl-rhamnoside (MW 596). Also, the EtOAc extract increased biofilm formation by S. aureus and inhibited cytokine and NO production induced by LPS in RAW macrophages. Conclusion M. tomentosa flavonoid-enriched EtOAc extract presented a bactericidal and anti-inflammatory pharmacological potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.