Identifying adaptive loci can provide insight into the mechanisms underlying local adaptation. Genotype-environment association (GEA) methods, which identify these loci based on correlations between genetic and environmental data, are particularly promising. Univariate methods have dominated GEA, despite the high dimensional nature of genotype and environment. Multivariate methods, which analyse many loci simultaneously, may be better suited to these data as they consider how sets of markers covary in response to environment. These methods may also be more effective at detecting adaptive processes that result in weak, multilocus signatures. Here, we evaluate four multivariate methods and five univariate and differentiation-based approaches, using published simulations of multilocus selection. We found that Random Forest performed poorly for GEA. Univariate GEAs performed better, but had low detection rates for loci under weak selection. Constrained ordinations, particularly redundancy analysis (RDA), showed a superior combination of low false-positive and high true-positive rates across all levels of selection. These results were robust across the demographic histories, sampling designs, sample sizes and weak population structure tested here. The value of combining detections from different methods was variable and depended on the study goals and knowledge of the drivers of selection. Re-analysis of genomic data from grey wolves highlighted the unique, covarying sets of adaptive loci that could be identified using RDA. Although additional testing is needed, this study indicates that RDA is an effective means of detecting adaptation, including signatures of weak, multilocus selection, providing a powerful tool for investigating the genetic basis of local adaptation.
20Identifying adaptive loci can provide insight into the mechanisms underlying local adaptation. 21 Genotype-environment association (GEA) 40. CC-BY-NC-ND 4.0 International license It is made available under a (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
Local adaptations can determine the potential of populations to respond to environmental changes, yet adaptive genetic variation is commonly ignored in models forecasting species vulnerability and biogeographical shifts under future climate change. Here we integrate genomic and ecological modeling approaches to identify genetic adaptations associated with climate in two cryptic forest bats. We then incorporate this information directly into forecasts of range changes under future climate change and assessment of population persistence through the spread of climate-adaptive genetic variation (evolutionary rescue potential). Considering climate-adaptive potential reduced range loss projections, suggesting that failure to account for intraspecific variability can result in overestimation of future losses. On the other hand, range overlap between species was projected to increase, indicating that interspecific competition is likely to play an important role in limiting species’ future ranges. We show that although evolutionary rescue is possible, it depends on a population’s adaptive capacity and connectivity. Hence, we stress the importance of incorporating genomic data and landscape connectivity in climate change vulnerability assessments and conservation management.
The spatial structure of the environment (e.g. the configuration of habitat patches) may play an important role in determining the strength of local adaptation. However, previous studies of habitat heterogeneity and local adaptation have largely been limited to simple landscapes, which poorly represent the multiscale habitat structure common in nature. Here, we use simulations to pursue two goals: (i) we explore how landscape heterogeneity, dispersal ability and selection affect the strength of local adaptation, and (ii) we evaluate the performance of several genotype-environment association (GEA) methods for detecting loci involved in local adaptation. We found that the strength of local adaptation increased in spatially aggregated selection regimes, but remained strong in patchy landscapes when selection was moderate to strong. Weak selection resulted in weak local adaptation that was relatively unaffected by landscape heterogeneity. In general, the power of detection methods closely reflected levels of local adaptation. False-positive rates (FPRs), however, showed distinct differences across GEA methods based on levels of population structure. The univariate GEA approach had high FPRs (up to 55%) under limited dispersal scenarios, due to strong isolation by distance. By contrast, multivariate, ordination-based methods had uniformly low FPRs (0-2%), suggesting these approaches can effectively control for population structure. Specifically, constrained ordinations had the best balance of high detection and low FPRs and will be a useful addition to the GEA toolkit. Our results provide both theoretical and practical insights into the conditions that shape local adaptation and how these conditions impact our ability to detect selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.