The detection of adaptive loci in the genome is essential as it gives the possibility of understanding what proportion of a genome or which genes are being shaped by natural selection. Several statistical methods have been developed which make use of molecular data to reveal genomic regions under selection. In this paper, we propose an approach to address this issue from the environmental angle, in order to complement results obtained by population genetics. We introduce a new method to detect signatures of natural selection based on the application of spatial analysis, with the contribution of geographical information systems (GIS), environmental variables and molecular data. Multiple univariate logistic regressions were carried out to test for association between allelic frequencies at marker loci and environmental variables. This spatial analysis method (SAM) is similar to current population genomics approaches since it is designed to scan hundreds of markers to assess a putative association with hundreds of environmental variables. Here, by application to studies of pine weevils and breeds of sheep we demonstrate a strong correspondence between SAM results and those obtained using population genetics approaches. Statistical signals were found that associate loci with environmental parameters, and these loci behave atypically in comparison with the theoretical distribution for neutral loci. The contribution of this new tool is not only to permit the identification of loci under selection but also to establish hypotheses about ecological factors that could exert the selection pressure responsible. In the future, such an approach may accelerate the process of hunting for functional genes at the population level.
The spatial structure of the environment (e.g. the configuration of habitat patches) may play an important role in determining the strength of local adaptation. However, previous studies of habitat heterogeneity and local adaptation have largely been limited to simple landscapes, which poorly represent the multiscale habitat structure common in nature. Here, we use simulations to pursue two goals: (i) we explore how landscape heterogeneity, dispersal ability and selection affect the strength of local adaptation, and (ii) we evaluate the performance of several genotype-environment association (GEA) methods for detecting loci involved in local adaptation. We found that the strength of local adaptation increased in spatially aggregated selection regimes, but remained strong in patchy landscapes when selection was moderate to strong. Weak selection resulted in weak local adaptation that was relatively unaffected by landscape heterogeneity. In general, the power of detection methods closely reflected levels of local adaptation. False-positive rates (FPRs), however, showed distinct differences across GEA methods based on levels of population structure. The univariate GEA approach had high FPRs (up to 55%) under limited dispersal scenarios, due to strong isolation by distance. By contrast, multivariate, ordination-based methods had uniformly low FPRs (0-2%), suggesting these approaches can effectively control for population structure. Specifically, constrained ordinations had the best balance of high detection and low FPRs and will be a useful addition to the GEA toolkit. Our results provide both theoretical and practical insights into the conditions that shape local adaptation and how these conditions impact our ability to detect selection.
The evolutionary basis of domestication has been a longstanding question and its genetic architecture is becoming more tractable as more domestic species become genome-enabled. Before becoming established worldwide, sheep and goats were domesticated in the fertile crescent 10,500 years before present (YBP) where their wild relatives remain. Here we sequence the genomes of wild Asiatic mouflon and Bezoar ibex in the sheep and goat domestication center and compare their genomes with that of domestics from local, traditional, and improved breeds. Among the genomic regions carrying selective sweeps differentiating domestic breeds from wild populations, which are associated among others to genes involved in nervous system, immunity and productivity traits, 20 are common to Capra and Ovis. The patterns of selection vary between species, suggesting that while common targets of selection related to domestication and improvement exist, different solutions have arisen to achieve similar phenotypic end-points within these closely related livestock species.
Understanding the genetic basis of species adaptation in the context of global change poses one of the greatest challenges of this century. Although we have begun to understand the molecular basis of adaptation in those species for which whole genome sequences are available, the molecular basis of adaptation is still poorly understood for most non-model species. In this paper, we outline major challenges and future research directions for correlating environmental factors with molecular markers to identify adaptive genetic variation, and point to research gaps in the application of landscape genetics to real-world problems arising from global change, such as the ability of organisms to adapt over rapid time scales. High throughput sequencing generates vast quantities of molecular data to address the challenge of studying adaptive genetic variation in non-model species. Here, we suggest that improvements in the sampling design should consider spatial dependence among sampled individuals. Then, we describe available statistical approaches for integrating spatial dependence into landscape analyses of adaptive genetic variation.
Background: Previous studies have suggested that modern obesogenic environments accentuate the genetic risk of obesity. However, these studies have proven controversial as to which, if any, measures of the environment accentuate genetic susceptibility to high body mass index (BMI). Methods: We used up to 120 000 adults from the UK Biobank study to test the hypothesis that high-risk obesogenic environments and behaviours accentuate genetic susceptibility to obesity. We used BMI as the outcome and a 69-variant genetic risk score (GRS) for obesity and 12 measures of the obesogenic environment as exposures. These measures included Townsend deprivation index (TDI) as a measure of socio-economic position, TV watching, a ‘Westernized’ diet and physical activity. We performed several negative control tests, including randomly selecting groups of different average BMIs, using a simulated environment and including sun-protection use as an environment. Results: We found gene–environment interactions with TDI (Pinteraction = 3 × 10–10), self-reported TV watching (Pinteraction = 7 × 10–5) and self-reported physical activity (Pinteraction = 5 × 10–6). Within the group of 50% living in the most relatively deprived situations, carrying 10 additional BMI-raising alleles was associated with approximately 3.8 kg extra weight in someone 1.73 m tall. In contrast, within the group of 50% living in the least deprivation, carrying 10 additional BMI-raising alleles was associated with approximately 2.9 kg extra weight. The interactions were weaker, but present, with the negative controls, including sun-protection use, indicating that residual confounding is likely. Conclusions: Our findings suggest that the obesogenic environment accentuates the risk of obesity in genetically susceptible adults. Of the factors we tested, relative social deprivation best captures the aspects of the obesogenic environment responsible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.