Generalized autoregressive moving average (GARMA) models are a class of models that was developed for extending the univariate Gaussian ARMA time series model to a flexible observation-driven model for non-Gaussian time series data. This work presents a Bayesian approach for GARMA models with Poisson, binomial, and negative binomial distributions. A simulation study was carried out to investigate the performance of Bayesian estimation and Bayesian model selection criteria. In addition, three real data sets were analyzed using the Bayesian approach on GARMA models.
Agradeço, primeiramente a Deus e Nossa Senhora. Agradeço também: A meus pais e demais familiares. A Paula, pelo amor, amizade e total apoio. A todos os amigos que sempre estiveram presentes, contribuindo com discussões, críticas e sugestões. Ao professor Marinho Gomes de Andrade Filho, pela orientação segura, e pelo incentivo durante todo o curso de pós-graduação. Ao professor Jacek Leśkow, pela orientação durante meu doutorado sanduíche. E a todos que contribuíram direta ou indiretamente na obtenção deste título.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.