A common measure of the quality or effectiveness of a virtual environment (VE) is the amount of presence it evokes in users. Presence is often defined as the sense of being there in a VE. There has been much debate about the best way to measure presence, and presence researchers need, and have sought, a measure that is reliable, valid, sensitive, and objective.We hypothesized that to the degree that a VE seems real, it would evoke physiological responses similar to those evoked by the corresponding real environment, and that greater presence would evoke a greater response. To examine this, we conducted three experiments, the results of which support the use of physiological reaction as a reliable, valid, sensitive, and objective presence measure. The experiments compared participants' physiological reactions to a non-threatening virtual room and their reactions to a stressful virtual height situation. We found that change in heart rate satisfied our requirements for a measure of presence, change in skin conductance did to a lesser extent, and that change in skin temperature did not. Moreover, the results showed that inclusion of a passive haptic element in the VE significantly increased presence and that for presence evoked: 30FPS > 20FPS > 15FPS.
A common measure of the quality or effectiveness of a virtual environment (VE) is the amount of presence it evokes in users. Presence is often defined as the sense of being there in a VE. There has been much debate about the best way to measure presence, and presence researchers need, and have sought, a measure that is reliable, valid, sensitive, and objective.We hypothesized that to the degree that a VE seems real, it would evoke physiological responses similar to those evoked by the corresponding real environment, and that greater presence would evoke a greater response. To examine this, we conducted three experiments, the results of which support the use of physiological reaction as a reliable, valid, sensitive, and objective presence measure. The experiments compared participants' physiological reactions to a non-threatening virtual room and their reactions to a stressful virtual height situation. We found that change in heart rate satisfied our requirements for a measure of presence, change in skin conductance did to a lesser extent, and that change in skin temperature did not. Moreover, the results showed that inclusion of a passive haptic element in the VE significantly increased presence and that for presence evoked: 30FPS > 20FPS > 15FPS.
A common measure of effectiveness of a virtual environment (VE) is the amount of presence it evokes in users. Presence is commonly defined as the sense of being there in a VE. There has been much debate about the best way to measure presence, and presence researchers need and have sought a measure that is reliable, valid, sensitive, and objective. We hypothesized that to the degree that a VE seems real, it would evoke physiological responses similar to those evoked by the corresponding real environment, and that greater presence would evoke a greater response. To examine this, we conducted four experiments, each of which built upon findings that physiological measures in general, and heart rate in particular, are reliable, valid, sensitive, and objective presence measures. The experiments compare participants' physiological reactions to a nonthreatening virtual room and their reactions to a stressful virtual height situation. We found that change in heart rate satisfied our requirements for a measure of presence, change in skin conductance did to a lesser extent, and that change in skin temperature did not. Moreover, the results showed that significant increases in heart rate measures of presence appeared with the inclusion of a passive haptic element in the VE, with increasing frame rate (30 FPS > 20 FPS > 15 FPS) and when end-to-end latency was reduced (50 ms > 90 ms).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.