Adipose tissue has been shown to contain adult mesenchymal stem cells that have therapeutic applications in regenerative medicine. There is evidence that the ability of adipose precursor cells to grow and differentiate varies among fat depots and changes with age. Defining these variations in cell function and molecular mechanisms of adipogenesis will facilitate the development of cellbased therapies. We compared cells harvested from 5 different subcutaneous (SC) adipose depots in 12 female patients classified into 3 age ranges (25-30, 40-45, and 55-60 years old). Capacity for differentiation of isolated adipose-derived stem cells (ASCs) with and without ciglitazone, a strong peroxisome proliferatoractivated receptors (PPAR)-γ agonist, was assessed in vitro. ASCs were also characterized by lipolytic function, proliferation, and sensitivity to apoptosis. Additionally, PPAR-γ-2 protein expression was determined. We observed a difference in the apoptotic susceptibility of ASCs from various SC depots, with the superficial abdominal depot (above Scarpas layer) significantly more resistant to apoptosis when compared with the 4 other depots. We have also demonstrated that a PPAR-γ agonist aids in the induction of differentiation in cells from all depots and ages. Although sensitivity to apoptosis was linked to anatomic depot, differences in cell proliferation were related primarily to age. Stimulated free glycerol release has been shown to be highest in the arm depot. The arm depot has also consistently shown expression of PPAR-γ-2 with and without a PPAR-γ agonist. Younger patients have increased PPAR-γ-2 expression in all depots, whereas the older patients have consistent elevated expression only in the arm and thigh depots. We have shown there is variability in function of ASCs that have been harvested from different SC depots. Additionally, we have shown age-related changes in function. These data will help select patients and cell harvest sites most suitable for tissue engineering therapies.
Small intestinal submucosa particles are a favorable scaffold for preadipocytes, allowing ex vivo proliferation on particles small enough to be injected. Delivery of FGF-2 from poly(lactic-co-glycolic acid) microspheres resulted in cell survival and enhanced vascularization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.