Background-High-resolution visualization of atherosclerotic plaque morphology may be essential for identifying coronary plaques that cause acute coronary events. Optical coherence tomography (OCT) is an intravascular imaging modality capable of providing cross-sectional images of tissue with a resolution of 10 m. To date, OCT imaging has not been investigated in sufficient detail to assess its accuracy for characterizing atherosclerotic plaques. The aim of this study was to establish objective OCT image criteria for atherosclerotic plaque characterization in vitro. Methods and Results-OCT images of 357 (diseased) atherosclerotic arterial segments obtained at autopsy were correlated with histology. OCT image criteria for 3 types of plaque were formulated by analysis of a subset (nϭ50) of arterial segments. OCT images of fibrous plaques were characterized by homogeneous, signal-rich regions; fibrocalcific plaques by well-delineated, signal-poor regions with sharp borders; and lipid-rich plaques by signal-poor regions with diffuse borders. Independent validation of these criteria by 2 OCT readers for the remaining segments (nϭ307) demonstrated a sensitivity and specificity ranging from 71% to 79% and 97% to 98% for fibrous plaques, 95% to 96% and 97% for fibrocalcific plaques, and 90% to 94% and 90% to 92% for lipid-rich plaques, respectively (overall agreement, ϭ0.83 to 0.84). The interobserver and intraobserver reliabilities of OCT assessment were high ( values of 0.88 and 0.91, respectively). Conclusions-Objective OCT criteria are highly sensitive and specific for characterizing different types of atherosclerotic plaques. These results represent an important step in validating this new intravascular imaging modality and will provide a basis for the interpretation of intracoronary OCT images obtained from patients.
Current medical imaging technologies allow visualization of tissue anatomy in the human body at resolutions ranging from 100 micrometers to 1 millimeter. These technologies are generally not sensitive enough to detect early-stage tissue abnormalities associated with diseases such as cancer and atherosclerosis, which require micrometer-scale resolution. Here, optical coherence tomography was adapted to allow high-speed visualization of tissue in a living animal with a catheter-endoscope 1 millimeter in diameter. This method, referred to as "optical biopsy," was used to obtain cross-sectional images of the rabbit gastrointestinal and respiratory tracts at 10-micrometer resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.