A tissue engineering approach was developed to produce arbitrary lengths of vascular graft material from smooth muscle and endothelial cells that were derived from a biopsy of vascular tissue. Bovine vessels cultured under pulsatile conditions had rupture strengths greater than 2000 millimeters of mercury, suture retention strengths of up to 90 grams, and collagen contents of up to 50 percent. Cultured vessels also showed contractile responses to pharmacological agents and contained smooth muscle cells that displayed markers of differentiation such as calponin and myosin heavy chains. Tissue-engineered arteries were implanted in miniature swine, with patency documented up to 24 days by digital angiography.
Background-High-resolution visualization of atherosclerotic plaque morphology may be essential for identifying coronary plaques that cause acute coronary events. Optical coherence tomography (OCT) is an intravascular imaging modality capable of providing cross-sectional images of tissue with a resolution of 10 m. To date, OCT imaging has not been investigated in sufficient detail to assess its accuracy for characterizing atherosclerotic plaques. The aim of this study was to establish objective OCT image criteria for atherosclerotic plaque characterization in vitro. Methods and Results-OCT images of 357 (diseased) atherosclerotic arterial segments obtained at autopsy were correlated with histology. OCT image criteria for 3 types of plaque were formulated by analysis of a subset (nϭ50) of arterial segments. OCT images of fibrous plaques were characterized by homogeneous, signal-rich regions; fibrocalcific plaques by well-delineated, signal-poor regions with sharp borders; and lipid-rich plaques by signal-poor regions with diffuse borders. Independent validation of these criteria by 2 OCT readers for the remaining segments (nϭ307) demonstrated a sensitivity and specificity ranging from 71% to 79% and 97% to 98% for fibrous plaques, 95% to 96% and 97% for fibrocalcific plaques, and 90% to 94% and 90% to 92% for lipid-rich plaques, respectively (overall agreement, ϭ0.83 to 0.84). The interobserver and intraobserver reliabilities of OCT assessment were high ( values of 0.88 and 0.91, respectively). Conclusions-Objective OCT criteria are highly sensitive and specific for characterizing different types of atherosclerotic plaques. These results represent an important step in validating this new intravascular imaging modality and will provide a basis for the interpretation of intracoronary OCT images obtained from patients.
We established that FDG-PET imaging can be used to assess the severity of inflammation in carotid plaques in patients. If subsequent natural history studies link increased FDG-PET activity in carotid arteries with clinical events, this noninvasive measure could be used to identify a subset of patients with carotid atherosclerosis in need of intensified medical therapy or carotid artery intervention to prevent stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.