The potential of parasites to affect host abundance has been a topic of heated contention within the scientific community for some time, with many maintaining that issues such as habitat loss are more important in regulating wildlife populations than diseases. This is in part due to the difficulty in detecting and quantifying the consequences of disease, such as parasitic infection, within wild systems. An example of this is found in the Northern bobwhite quail (
Colinus virginanus
), an iconic game bird that is one of the most extensively studied vertebrates on the planet. Yet, despite countless volumes dedicated to the study and management of this bird, bobwhite continue to disappear from fields, forest margins, and grasslands across the United States in what some have referred to as “our greatest wildlife tragedy”. Here, we will discuss the history of disease and wildlife conservation, some of the challenges wildlife disease studies face in the ever-changing world, and how a “weight of evidence” approach has been invaluable to evaluating the impact of parasites on bobwhite in the Rolling Plains of Texas. Through this, we highlight the potential of using “weight of the evidence” to better understand the complex effects of diseases on wildlife and urge a greater consideration of the importance of disease in wildlife conservation.
BackgroundOxyspirura petrowi (Spirurida: Thelaziidae), a heteroxenous nematode of birds across the USA, may play a role in the decline of the northern bobwhite (Colinus virginianus) in the Rolling Plains Ecoregion of West Texas. Previous molecular studies suggest that crickets, grasshoppers and cockroaches serve as potential intermediate hosts of O. petrowi, although a complete study on the life-cycle of this nematode has not been conducted thus far. Consequently, this study aims to improve our understanding of the O. petrowi life-cycle by experimentally infecting house crickets (Acheta domesticus) with O. petrowi eggs, feeding infected crickets to bobwhite and assessing the life-cycle of this nematode in both the definitive and intermediate hosts.MethodsOxyspirura petrowi eggs were collected from gravid worms recovered from wild bobwhite and fed to house crickets. The development of O. petrowi within crickets was monitored by dissection of crickets at specified intervals. When infective larvae were found inside crickets, parasite-free pen-raised bobwhite were fed four infected crickets each. The maturation of O. petrowi in bobwhite was monitored through fecal floats and bobwhite necropsies at specified intervals.ResultsIn this study, we were able to infect both crickets (n = 45) and bobwhite (n = 25) with O. petrowi at a rate of 96%. We successfully replicated and monitored the complete O. petrowi life-cycle in vivo, recovering embryonated O. petrowi eggs from the feces of bobwhite 51 days after consumption of infected crickets. All life-cycle stages of O. petrowi were confirmed in both the house cricket and the bobwhite using morphological and molecular techniques.ConclusionsThis study provides a better understanding of the infection mechanism and life-cycle of O. petrowi by tracking the developmental progress within both the intermediate and definitive host. To our knowledge, this study is the first to fully monitor the complete life-cycle of O. petrowi and may allow for better estimates into the potential for future epizootics of O. petrowi in bobwhite. Finally, this study provides a model for experimental infection that may be used in research examining the effects of O. petrowi infection in bobwhite.
Background: The monarch butterfly (Danaus plexippus) is a conspicuous insect that has experienced a drastic population decline over the past two decades. While there are several factors contributing to dwindling monarch populations, habitat loss is considered the most significant threat to monarchs. In the United States, loss of milkweed, particularly in the Midwest, has greatly reduced the available breeding habitat of monarchs. This has led to extensive efforts to conserve and restore milkweed resources throughout the Midwest. Recently, these research and conservation efforts have been expanded to include other important areas along the monarch's migratory path. Results: During the fall of 2018, we conducted surveys of monarch eggs and larvae through West Texas. We documented monarch and queen butterfly (Danaus gilippus) reproduction throughout the region and used the proportion of monarch and queen larva to estimate the number of monarch eggs. Peak egg densities for monarchs were as high as 0.78 per milkweed ramet after correction for the presence of queens. Despite our observations encompassing only a limited sample across one season, the peak monarch egg densities we observed exceeded published reports from when monarch populations were higher. Conclusions: To our knowledge, this is the first study to correct for the presence of queens when calculating the density of monarch eggs. This research also provides insight into monarch utilization of less well-known regions, such as West Texas, and highlights the need to expand the scope of monarch monitoring and conservation initiatives. While the importance of monarch research and conservation in the Midwest is unquestionable, more comprehensive efforts may identify new priorities in monarch conservation and lead to a more robust and effective overall strategy, particularly given the dynamic and rapidly changing global environment.
The Safety and Health Index System (SHIS) has developed beyond its initial role as an in-plant labeling system. It has evolved into a classification scheme to rank the hazards found in the workplace and is useful in prioritizing industrial hygiene monitoring programs, installation of engineering controls, and implementation of medical monitoring for chronic hazards. In addition to providing objective criteria on which to evaluate physical and acute health hazards, this system addresses chronic health hazards such as carcinogens, mutagens, teratogens, and reproductive toxins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.