In the classic theory of airway lumen narrowing in asthma, active force in airway smooth muscle is presumed to be in static mechanical equilibrium with the external load against which the muscle has shortened. This theory is useful because it identifies the static equilibrium length toward which activated airway smooth muscle would tend if given enough time. The corresponding state toward which myosin-actin interactions would tend is called the latch state. But are the concepts of a static mechanical equilibrium and the latch state applicable in the setting of tidal loading, as occurs during breathing? To address this question, we have studied isolated, maximally contracted bovine tracheal smooth muscle subjected to tidal stretches imposed at 0.33 Hz. We measured the active force (F) and stiffness (E), which reflect numbers of actin-myosin interactions, and hysteresivity (eta) which reflects the rate of turnover of those interactions. When the amplitude of imposed tidal stretch (epsilon) was very small, 0.25% of muscle optimal length, the steady-state value of F approximated the isometric force, E was large, and eta was small. When epsilon was increased beyond 1%, however, F and E promptly decreased and eta promptly increased. The muscle could be maintained in these steady, dynamically determined contractile states for as long as the tidal stretches were sustained; when epsilon subsequently decreased back to 0.25%, F, E, and eta returned slowly toward their previous values. The provocative stretch amplitude required to cause active force or muscle stiffness to fall by half, or hysteresivity to double, was slightly greater than 2%. These observations are consistent with a direct effect of stretch upon bridge dynamics in which, with increasing tidal stretch amplitude, the number of actin-myosin interactions decreases and their rate of turnover increases. We conclude that the interactions of myosin with actin are at every instant tending toward those that would prevail in the isometric steady state, but tidal changes of muscle length cause an excess in the rate of detachment. These stretch-induced detachment events can come so fast compared with the rate of attachment that static equilibrium conditions are never attained. If so, then airway lumenal narrowing and the underlying contractile state would be governed by a dynamic mechanical process rather than by a mechanical equilibrium of static forces.
Two linear accelerators have been commissioned for delivering IMRT treatments using a step-and-shoot approach. To assess beam startup stability for 6 and 18 MV x-ray beams, dose delivered per monitor unit (MU), beam flatness, and beam symmetry were measured as a function of the total number of MU delivered at a clinical dose rate of 400 MU per minute. Relative to a 100 MU exposure, the dose delivered per MU by both linear accelerators was found to be within +/-2% for exposures larger than 4 MU. Beam flatness and symmetry also met accepted quality assurance standards for a minimum exposure of 4 MU. We have found that the performance of the two machines under study is well suited to the delivery of step-and-shoot IMRT. A system of dose calculation has also been commissioned for applying head scatter corrections to fields as small as 1x1 cm2. The accuracy and precision of the relative output calculations in water was validated for small fields and fields offset from the axis of collimator rotation. For both 6 and 18 MV x-ray beams, the dose per MU calculated in a water phantom agrees with measured data to within 1% on average, with a maximum deviation of 2.5%. The largest output factor discrepancies were seen when the actual radiation field size deviated from the set field size. The measured output in water can vary by as much 16% for 1x1 cm2 fields, when the measured field size deviates from the set field size by 2 mm. For a 1 mm deviation, this discrepancy was reduced to 8%. Steps should be taken to ensure collimator precision is tightly controlled when using such small fields. If this is not possible, very small fields should not contribute to a significant portion of the treatment, or uncertainties in the collimator position may effect the accuracy of the dose delivered.
The purpose of this study was to perform comprehensive measurements and testing of a Novalis Tx linear accelerator, and to develop technical guidelines for commissioning from the time of acceptance testing to the first clinical treatment. The Novalis Tx (NTX) linear accelerator is equipped with, among other features, a high‐definition MLC (HD120 MLC) with 2.5 mm central leaves, a 6D robotic couch, an optical guidance positioning system, as well as X‐ray‐based image guidance tools to provide high accuracy radiation delivery for stereotactic radiosurgery and stereotactic body radiation therapy procedures. We have performed extensive tests for each of the components, and analyzed the clinical data collected in our clinic. We present technical guidelines in this report focusing on methods for: (1) efficient and accurate beam data collection for commissioning treatment planning systems, including small field output measurements conducted using a wide range of detectors; (2) commissioning tests for the HD120 MLC; (3) data collection for the baseline characteristics of the on‐board imager (OBI) and ExacTrac X‐ray (ETX) image guidance systems in conjunction with the 6D robotic couch; and (4) end‐to‐end testing of the entire clinical process. Established from our clinical experience thus far, recommendations are provided for accurate and efficient use of the OBI and ETX localization systems for intra‐ and extracranial treatment sites. Four results are presented. (1) Basic beam data measurements: Our measurements confirmed the necessity of using small detectors for small fields. Total scatter factors varied significantly (30% to approximately 62%) for small field measurements among detectors. Unshielded stereotactic field diode (SFD) overestimated dose by ~ 2% for large field sizes. Ion chambers with active diameters of 6 mm suffered from significant volume averaging. The sharpest profile penumbra was observed for the SFD because of its small active diameter (0.6 mm). (2) MLC commissioning: Winston Lutz test, light/radiation field congruence, and Picket Fence tests were performed and were within criteria established by the relevant task group reports. The measured mean MLC transmission and dynamic leaf gap of 6 MV SRS beam were 1.17% and 0.36 mm, respectively. (3) Baseline characteristics of OBI and ETX: The isocenter localization errors in the left/right, posterior/anterior, and superior/inferior directions were, respectively, −0.2±0.2 mm, −0.8±0.2 mm, and −0.8±0.4 mm for ETX, and 0.5±0.7 mm, 0.6±0.5 mm, and 0.0±0.5 mm for OBI cone‐beam computed tomography. The registration angular discrepancy was 0.1±0.2°, and the maximum robotic couch error was 0.2°. (4) End‐to‐end tests: The measured isocenter dose differences from the planned values were 0.8% and 0.4%, measured respectively by an ion chamber and film. The gamma pass rate, measured by EBT2 film, was 95% (3% DD and 1 mm DTA). Through a systematic series of quantitative commissioning experiments and end‐to‐end tests and our initial clinical experience, described in this ...
IMPORTANCE Organ transplant recipients have a higher incidence of skin cancer. This risk is magnified over time and with continued exposure to immunosuppression. Skin cancer in nonwhite patients is associated with greater morbidity and mortality owing to diagnosis at a more advanced stage, which suggests that nonwhite organ transplant recipients are at even higher risk. OBJECTIVE To describe demographic and clinical factors and the incidence of skin cancer in nonwhite organ transplant recipients. DESIGN, SETTING, AND PARTICIPANTS We performed a retrospective medical record review of patients who were organ transplant recipients (154 were white and 259 nonwhite [black, Asian, Hispanic, Pacific Islander]) seen from November 1, 2011, to April 18, 2016 at an academic referral center. MAIN OUTCOMES AND MEASURES Variables were analyzed and compared between racial groups, including sex, age, race/ethnicity, Fitzpatrick type, type and location of skin cancer, type of organ transplanted, time to diagnosis of skin cancer after transplantation, and history of condyloma acuminata and/or verruca vulgaris. RESULTS Most of the 413 patients (62.7%) evaluated were nonwhite organ transplant recipients; 264 were men, and 149 were women. Their mean (SD) age was 60.09 (13.59) years. Nineteen skin cancers were identified in 15 patients (5.8%) representing 3 racial/ethnic groups: black (6 patients), Asian (5), and Hispanic (4). All squamous cell carcinomas in blacks were diagnosed in the in situ stage, located on sun-protected sites, and occurred in patients whose lesions tested positive for human papilloma virus (HPV) and/or who endorsed a history of condyloma acuminata or verruca vulgaris. Most skin cancers in Asians were located on sun-exposed areas and occurred in individuals who emigrated from equatorial locations. CONCLUSIONS AND RELEVANCE Nonwhite organ transplant recipients are at risk for developing skin cancer posttransplantation. Follow-up in a specialized transplant dermatology center and baseline total-body skin examination should be part of posttransplantation care in all organ transplant recipients, including nonwhite patients. A thorough inspection of the groin and genitalia is imperative in black organ transplant recipients. History of HPV infection, particularly in black organ transplant recipients, and sun exposure/emigration history in Asian organ transplant recipients should be documented. Vigilant photoprotection may be of lesser importance in the prevention of skin cancer in black organ transplant recipients. Risk factors for nonwhite organ transplant recipients differ between races/ethnicities and warrant further study in efforts to better counsel and prevent skin cancer in these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.