In the classic theory of airway lumen narrowing in asthma, active force in airway smooth muscle is presumed to be in static mechanical equilibrium with the external load against which the muscle has shortened. This theory is useful because it identifies the static equilibrium length toward which activated airway smooth muscle would tend if given enough time. The corresponding state toward which myosin-actin interactions would tend is called the latch state. But are the concepts of a static mechanical equilibrium and the latch state applicable in the setting of tidal loading, as occurs during breathing? To address this question, we have studied isolated, maximally contracted bovine tracheal smooth muscle subjected to tidal stretches imposed at 0.33 Hz. We measured the active force (F) and stiffness (E), which reflect numbers of actin-myosin interactions, and hysteresivity (eta) which reflects the rate of turnover of those interactions. When the amplitude of imposed tidal stretch (epsilon) was very small, 0.25% of muscle optimal length, the steady-state value of F approximated the isometric force, E was large, and eta was small. When epsilon was increased beyond 1%, however, F and E promptly decreased and eta promptly increased. The muscle could be maintained in these steady, dynamically determined contractile states for as long as the tidal stretches were sustained; when epsilon subsequently decreased back to 0.25%, F, E, and eta returned slowly toward their previous values. The provocative stretch amplitude required to cause active force or muscle stiffness to fall by half, or hysteresivity to double, was slightly greater than 2%. These observations are consistent with a direct effect of stretch upon bridge dynamics in which, with increasing tidal stretch amplitude, the number of actin-myosin interactions decreases and their rate of turnover increases. We conclude that the interactions of myosin with actin are at every instant tending toward those that would prevail in the isometric steady state, but tidal changes of muscle length cause an excess in the rate of detachment. These stretch-induced detachment events can come so fast compared with the rate of attachment that static equilibrium conditions are never attained. If so, then airway lumenal narrowing and the underlying contractile state would be governed by a dynamic mechanical process rather than by a mechanical equilibrium of static forces.
In asthma, the mechanisms relating airway obstruction, hyperresponsiveness, and inflammation remain rather mysterious. We show here that regulation of airway smooth muscle length corresponds to a dynamically equilibrated steady state, not the static mechanical equilibrium that had been previously assumed. This dynamic steady state requires as an essential feature a continuous supply of external mechanical energy (derived from tidal lung inflations) that acts to perturb the interactions of myosin with actin, drive the molecular state of the system far away from thermodynamic equilibrium, and bias the muscle toward lengthening. This mechanism leads naturally to the suggestion that excessive airway narrowing in asthma may be associated with the destabilization of that dynamic process and its resulting collapse back to static equilibrium. With this collapse the muscle undergoes a phase transition and virtually freezes at its static equilibrium length. This mechanism may help to elucidate several unexplained phenomena including the multifactorial origins of airway hyperresponsiveness, how allergen sensitization leads to airway hyperresponsiveness, how hyperresponsiveness can persist long after airway inflammation is resolved, and the inability in asthma of deep inspirations to relax airway smooth muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.