Social media platforms are increasingly used during disasters. In the U.S., victims consider these platforms to be reliable news sources and they believe first responders will see what they publicly post [1,2]. While having ways to request help during disasters might save lives, this information is difficult to find because non-relevant content on social media completely overshadows content reflective of who needs help. To resolve this issue, we develop a framework for classifying hurricane-related images that have been human-annotated. Our transfer learning framework classifies each image using the VGG-16 convolutional neural network and multi-layer perceptron classifiers according to the urgency, relevance, and time period, in addition to the presence of damage and relief motifs [3]. We find that our framework not only successfully functions as an accurate method for hurricane-related image classification, but also that real-time classification of social media images using a small training set is possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.