The mitogen-activated protein (MAP) kinase homologue FUS3 mediates both transcription and Gl arrest in a pheromone-induced signal transduction cascade in Saccharomyces cerevisiae. We report an in vitro kinase assay for FUS3 and its use in identifying candidate substrates. The assay requires catalytically active FUS3 and pheromone induction. STE7, a MAP kinase kinase homologue, is needed for maximal activity. At least seven proteins that specifically associate with FUS3 are phosphorylated in the assay. Many of these substrates are physiologically relevant and are affected by in vivo levels of numerous signal transduction components. One substrate is likely to be the transcription factor STE12. A second is likely to be FAR1, a protein required for Gl arrest. FAR1 was isolated as a multicopy suppressor of a nonarresting fus3 mutant and interacts with FUS3 in a two hybrid system. Consistent with this FAR1 is a good substrate in vitro and generates a FUS3-associated substrate of expected size. These data support a model in which FUS3 mediates transcription and Gi arrest by direct activation of STE12 and FAR1 and phosphorylates many other proteins involved in the response to pheromone.
Activation of the Saccbaromyces cerevisiae MAP kinase Fus3 is thought to occur via a linear pathway involving the sequential action of three proteins: Ste5, a protein of unknown function, Stell, a MAPKK kinase homology and Ste7, a MAPK kinase homolog which phosphorylates and activates Fus3. In this report, we present evidence for a novel mechanism of Fus3 activation that involves a direct association with Ste5, a protein not predicted to interact with Fus3. First, overexpression of Ste5 suppresses fus3 point mutations in an allele-specific manner and increases Fus3 kinase activity in vitro. Second, Ste5 associates with Fus3 in vivo as demonstrated by the two-hybrid system and by two methods of copurification. Third, Ste5 and Fus3 associate prior to pheromone stimulation even when Fus3 is inactive, and in strains lacking Ste7 and Stell. Fourth, Ste5 is phosphorylated by Fus3 in purified complexes and copurifies with an additional protein kinase(s). These observations suggest the possibility that SteS promotes signal transduction by tethering Fus3 to its activating protein kinase(s).
Fus3p and Kss1p act at the end of a conserved signaling cascade that mediates numerous cellular responses for mating. To determine the role of Fus3p in different outputs, we isolated and characterized a series of partial-function fus3 point mutants for their ability to phosphorylate a substrate (Ste7p), activate Ste12p, undergo G1 arrest, form shmoos, select partners, mate, and recover. All the mutations lie in residues that are conserved among MAP kinases and are predicted to affect either enzyme activity or binding to Ste7p or substrates. The data argue that Fus3p regulates the various outputs assayed through the phosphorylation of multiple substrates. Different levels of Fus3p function are required for individual outputs, with the most function required for shmoo formation, the terminal output. The ability of Fus3p to promote shmoo formation strongly correlates with its ability to promote G1 arrest, suggesting that the two events are coupled. Fus3p promotes recovery through a mechanism that is distinct from its ability to promote G1 arrest and may involve a mechanism that does not require kinase activity. Moreover, catalytically inactive Fus3p inhibits the ability of active Fus3p to activate Ste12p and hastens recovery without blocking G1 arrest or shmoo formation. These results raise the possibility that in the absence of sustained activation of Fus3p, catalytically inactive Fus3p blocks further differentiation by restoring mitotic growth. Finally, suppression analysis argues that Kss1p contributes to the overall pheromone response in a wild-type strain, but that Fus3p is the critical kinase for all of the outputs tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.