Advances in spectroscopic techniques have led to an increase in the use of optical properties (absorbance and fluorescence) to assess dissolved organic matter (DOM) composition and infer sources and processing. However, little information is available to assess the impact of biological and photolytic processing on the optical properties of original DOM source materials. Over a 3.5 month laboratory study, we measured changes in commonly used optical properties and indices in DOM leached from peat soil, plants, and algae following biological and photochemical degradation to determine whether they provide unique signatures that can be linked to original DOM source. Changes in individual optical parameters varied by source material and process, with biodegradation and photodegradation often causing values to shift in opposite directions. Although values for different source materials frequently overlapped, multivariate statistical analyses showed that unique optical signatures could be linked to original DOM source material, with 17 optical properties determined by discriminant analysis to be significant (p < 0.05) in distinguishing between DOM source and environmental processing. These results demonstrate that inferring source material from optical properties is possible when parameters are evaluated in combination even after extensive biological and photochemical alteration.Dissolved organic matter (DOM) plays a central role in aquatic environments. Although quantifying DOM amount (commonly by measuring DOC concentration) is important, it is also important to characterize DOM composition because its chemical make-up determines how it reacts in the environment (Liang and Singer 2003;Minor et al. 2014). For example, a portion of the DOM pool is a source of bioavailable organic matter that supports aquatic food webs, attenuates light in the water column, and mobilizes and transports pollutants. In addition, a variety of studies have demonstrated that DOM composition can be used to infer the sources of DOM, which can help inform drinking water and watershed management (e.g., McKnight et al. 2001;Stedmon et al. 2003;Kraus et al. 2011).Both DOM amount and composition vary spatially and temporally due not only to its proximity to source material but also to its exposure to environmental processing (Hood et al. 2005;Coble 2007;Helms et al. 2008). Under some conditions sorption and the formation of colloids and even precipitation can transfer DOM into the particulate pool (POM), however the two main processes affecting DOM amount and composition in aquatic environments are biodegradation and photodegradation (Kieber et al. 1990;Miller and Moran 1997;Del Vecchio and Blough 2002). Both of these processes can lead to the conversion of DOM to inorganic compounds (i.e., CO 2 ) and its subsequent loss from the water column, and to the alteration of DOM chemical composition.Biodegradation-which can occur in both the photic and aphotic zone-typically leads to the rapid loss of labile, low molecular weight (LMW) aliphatic m...
Abstract:A better understanding is needed of how hydrological and biogeochemical processes control dissolved organic carbon (DOC) concentrations and dissolved organic matter (DOM) composition from headwaters downstream to large rivers. We examined a large DOM dataset from the National Water Information System of the US Geological Survey, which represents approximately 100 000 measurements of DOC concentration and DOM composition at many sites along rivers across the United States. Application of quantile regression revealed a tendency towards downstream spatial and temporal homogenization of DOC concentrations and a shift from dominance of aromatic DOM in headwaters to more aliphatic DOM downstream. The DOC concentration-discharge (C-Q) relationships at each site revealed a downstream tendency towards a slope of zero. We propose that despite complexities in river networks that have driven many revisions to the River Continuum Concept, rivers show a tendency towards chemostasis (C-Q slope of zero) because of a downstream shift from a dominance of hydrologic drivers that connect terrestrial DOM sources to streams in the headwaters towards a dominance of instream and near-stream biogeochemical processes that result in preferential losses of aromatic DOM and preferential gains of aliphatic DOM.
Highly resolved time series data are useful to accurately identify the timing, rate, and magnitude of solute transport in streams during hydrologically dynamic periods such as snowmelt. We used in situ optical sensors for nitrate (NO 3 -) and chromophoric dissolved organic matter fluorescence (FDOM) to measure surface water concentrations at 30 min intervals over the snowmelt period (March 21-May 13, 2009) at a 40.5 hectare forested watershed at Sleepers River, Vermont. We also collected discrete samples for laboratory absorbance and fluorescence as well as d 18 O-NO 3 -isotopes to help interpret the drivers of variable NO 3 -and FDOM concentrations measured in situ. In situ data revealed seasonal, event and diurnal patterns associated with hydrological and biogeochemical processes regulating stream NO 3 -and FDOM concentrations. An observed decrease in NO 3 -concentrations after peak snowmelt runoff and muted response to spring rainfall was consistent with the flushing of a limited supply of NO 3 -(mainly from nitrification) from source areas in surficial soils. Stream FDOM concentrations were coupled with flow throughout the study period, suggesting a strong hydrologic control on DOM concentrations in the stream. However, higher FDOM concentrations per unit streamflow after snowmelt likely reflected a greater hydraulic connectivity of the stream to leachable DOM sources in upland soils. We also observed diurnal NO 3 -variability of 1-2 lmol l -1 after snowpack ablation, presumably due to in-stream uptake prior to leafout. A comparison of NO 3 -and dissolved organic carbon yields (DOC, measured by FDOM proxy) calculated from weekly discrete samples and in situ data sub-sampled daily resulted in small to moderate differences over the entire study period (-4 to 1% for NO 3 -and -3 to -14% for DOC), but resulted in much larger differences for daily yields (-66 to ?27% for NO 3 -and -88 to ?47% for DOC, respectively). Despite challenges inherent in in situ sensor deployments in harsh seasonal conditions, these data provide important insights into processes controlling NO 3 -and FDOM in streams, and will be Electronic supplementary material The online version of this article (
Field-deployable sensors designed to continuously measure the fluorescence of colored dissolved organic matter (FDOM) in situ are of growing interest. However, the ability to make FDOM measurements that are comparable across sites and over time requires a clear understanding of how instrument characteristics and environmental conditions affect the measurements. In particular, the effects of water temperature and light attenuation by both colored dissolved material and suspended particles may be significant in settings such as rivers and streams. Using natural standard reference materials, we characterized the performance of four commerciallyavailable FDOM sensors under controlled laboratory conditions over ranges of temperature, dissolved organic matter (DOM) concentrations, and turbidity that spanned typical environmental ranges. We also examined field data from several major rivers to assess how often attenuation artifacts or temperature effects might be important. We found that raw (uncorrected) FDOM values were strongly affected by the light attenuation that results from dissolved substances and suspended particles as well as by water temperature. Observed effects of light attenuation and temperature agreed well with theory. Our results show that correction of measured FDOM values to account for these effects is necessary and feasible over much of the range of temperature, DOM concentration, and turbidity commonly encountered in surface waters. In most cases, collecting high-quality FDOM measurements that are comparable through time and between sites will require concurrent measurements of temperature and turbidity, and periodic discrete sample collection for laboratory measurement of DOM.
Dissolved organic matter (DOM) dynamics during storm events has received considerable attention in forested watersheds, but the extent to which storms impart rapid changes in DOM concentration and composition in highly disturbed agricultural watersheds remains poorly understood. In this study, we used identical in situ optical sensors for DOM fluorescence (FDOM) with and without filtration to continuously evaluate surface water DOM dynamics in a 415 km2 agricultural watershed over a 4 week period containing a short‐duration rainfall event. Peak turbidity preceded peak discharge by 4 h and increased by over 2 orders of magnitude, while the peak filtered FDOM lagged behind peak turbidity by 15 h. FDOM values reported using the filtered in situ fluorometer increased nearly fourfold and were highly correlated with dissolved organic carbon (DOC) concentrations (r2 = 0.97), providing a highly resolved proxy for DOC throughout the study period. Discrete optical properties including specific UV absorbance (SUVA254), spectral slope (S290–350), and fluorescence index (FI) were also strongly correlated with in situ FDOM and indicate a shift toward aromatic, high molecular weight DOM from terrestrially derived sources during the storm. The lag of the peak in FDOM behind peak discharge presumably reflects the draining of watershed soils from natural and agricultural landscapes. Field and experimental evidence showed that unfiltered FDOM measurements underestimated filtered FDOM concentrations by up to ∼60% at particle concentrations typical of many riverine systems during hydrologic events. Together, laboratory and in situ data provide insights into the timing and magnitude of changes in DOM quantity and quality during storm events in an agricultural watershed, and indicate the need for sample filtration in systems with moderate to high suspended sediment loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.