Osteochondral lesions of the talus are common injuries that affect a wide variety of active patients. The majority of these lesions are associated with ankle sprains and fractures though several nontraumatic etiologies have also been recognized. Patients normally present with a history of prior ankle injury and/or instability. In addition to standard ankle radiographs, magnetic resonance imaging and computed tomography are used to characterize the extent of the lesion and involvement of the subchondral bone. Symptomatic nondisplaced lesions can often be treated conservatively within the pediatric population though this treatment is less successful in adults. Bone marrow stimulation techniques such as microfracture have yielded favorable results for the treatment of small (<15 mm) lesions. Osteochondral autograft can be harvested most commonly from the ipsilateral knee and carries the benefit of repairing defects with native hyaline cartilage. Osteochondral allograft transplant is reserved for large cystic lesions that lack subchondral bone integrity. Cell-based repair techniques such as autologous chondrocyte implantation and matrix-associated chondrocyte implantation have been increasingly used in an attempt to repair the lesion with hyaline cartilage though these techniques require adequate subchondral bone. Biological agents such as platelet-rich plasma and bone marrow aspirate have been more recently studied as an adjunct to operative treatment but their use remains theoretical. The present article reviews the current concepts in the evaluation and management of osteochondral lesions of the talus, with a focus on the available surgical treatment options.
Progressive unloading of the lateral tibiofemoral compartment occurred with increasing DFVO correction angles. Clinically, when performing a DFVO for valgus malalignment, surgeons should consider overcorrecting the osteotomy by 5° to restore near-normal contact pressures and contact areas in the lateral compartment rather than the traditional teaching of correcting to neutral alignment.
Background Considerable debate remains over which anterior cruciate ligament (ACL) reconstruction technique can best restore knee stability. Traditionally, femoral tunnel drilling has been done through a previously drilled tibial tunnel; however, potential nonanatomic tunnel placement can produce a vertical graft, which although it would restore sagittal stability, it would not control rotational stability. To address this, some suggest that the femoral tunnel be created independently of the tibial tunnel through the use of an anteromedial (AM) portal, but whether this results in a more anatomic footprint or in stability comparable to that of the intact contralateral knee still remains controversial. Questions/purposes (1) Does the AM technique achieve footprints closer to anatomic than the transtibial (TT) technique? (2) Does the AM technique result in stability equivalent to that of the intact contralateral knee? (3) Are there differences in patient-reported outcomes between the two techniques? Methods Twenty male patients who underwent a bonepatellar tendon-bone autograft were recruited for this study, 10 in the TT group and 10 in the AM group. Patients in each group were randomly selected from four surgeons at our institution with both groups demonstrating similar demographics. The type of procedure chosen for each patient was based on the preferred technique of the surgeon. Some surgeons exclusively used the TT technique, whereas other surgeons specifically used the AM technique. Surgeons had no input on which patients were chosen to participate in this study. Mean postoperative time was 13 ± 2.8 and 15 ± 3.2 months for the TT and AM groups, respectively. Patients were identified retrospectively as having either the TT or AM Technique from our institutional database. At followup, clinical outcome scores were gathered as well as the footprint placement and knee stability assessed. To assess the footprint placement and knee stability, three-dimensional surface models of the femur, tibia, and ACL were created from MRI scans. The femoral and tibial footprints of the ACL reconstruction as compared with the intact contralateral ACL were determined. In addition, the AP displacement and rotational displacement of the femur were determined. Lastly, as a secondary measurement of stability, KT-1000 measurements were obtained at the followup visit. An a priori sample size calculation indicated that with 2n = 20 patients, we could detect a difference of 1 mm with 80% power at p \ 0.05. A Welch two-sample t-test (p \ 0.05) was performed to determine differences in the footprint measurements, AP displacement, rotational displacement, and KT-1000 measurements between the TT and AM groups. We further used the confidence interval approach with 90% confidence intervals on the pairwise mean group differences using a Games-Howell post hoc test to assess equivalence between the TT and AM groups for the previously mentioned measures. Results The AM and TT techniques were the same in terms of footprint except in the distal...
A learning curve in developing accuracy and precision in ACL femoral tunnel placement using the AMP technique exists; our study indicates this to be somewhere between 32 and 64 cases. Tibial tunnel placement does not share the same learning curve using this surgical technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.