Nowadays, social networks have become in a communication medium widely used to disseminate any type of information. In particular, the shared information in social networks usually includes a considerable number of traffic incidents reports of specific cities. In light of this, specialized social networks have emerged for detecting and disseminating traffic incidents, differentiating from generic social networks in which a wide variety of topics are communicated. In this context, Twitter is a case in point of a generic social network in which its users often share information about traffic incidents, while Waze is a social network specialized in traffic. In this paper we present a comparative study between Waze and an intelligent approach that detects traffic incidents by analyzing publications shared in Twitter. The comparative study was carried out considering Ciudad Autónoma de Buenos Aires (CABA), Argentina, as the region of interest. The results of this work suggest that both social networks should be considered as complementary sources of information. This conclusion is based on the fact that the proportion of mutual detections, i.e. traffic incidents detected by both approaches, was considerably low since it did not exceed 6% of the cases. Moreover, the results do not show that any of the approaches tend to anticipate in time to the other one in the detection of traffic incidents.Resumen Hoy en día, las redes sociales se han convertido en un medio de comunicación ampliamente utilizado para divulgar todo tipo de información. En particular, entre la información que es compartida se suelen incluir reportes de incidentes de tránsito de ciudades específicas. En vista de esto, aparte de las redes sociales genéricas en donde se comunican una amplia variedad de temas, han surgido redes sociales especializadas en la detección y divulgación de incidentes de tránsito. En este contexto, Twitter es un ejemplo de red social genérica en donde sus usuarios suelen informar incidentes de tránsito, mientras que Waze es una red social especializada en tránsito. En este artículo presentamos un estudio comparativo entre Waze y un enfoque inteligente que detecta incidentes de tránsito a partir del análisis de publicaciones compartidas en Twitter. El estudio comparativo fue realizado considerando a la Ciudad Autónoma de Buenos Aires (CABA), Argentina, como región de interés. Los resultados de este trabajo sugieren que ambos enfoques deberían ser considerados como fuentes de información complementarias. Esta conclusión se fundamenta en que la proporción de detecciones mutuas, es decir incidentes de transito detectados por ambos enfoques, resultó ser considerablemente baja no superando el 6% de los casos. Además, los resultados no evidencian que alguno de los enfoques tienda a anticipar temporalmente a su similar en la detección de incidentes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.