In free space optical communication, photodetectors serve not only as communications receivers but also as position sensitive detectors (PSDs) for pointing, tracking, and stabilization. Typically, two separate detectors are utilized to perform these tasks, but recent advances in the fabrication and development of large-area, low-noise avalanche photodiode (APD) arrays have enabled these devices to be used both as PSDs and as communications receivers. This combined functionality allows for more flexibility and simplicity in optical system design without sacrificing the sensitivity and bandwidth performance of smaller, single-element data receivers. This work presents the development of APD arrays rated for bandwidths beyond 1 GHz with measured carrier ionization ratios of approximately 0.2 at moderate APD gains. We discuss the fabrication and characterization of three types of APD arrays along with their performance as high-speed photodetectors.
Bromine Ion Beam Assisted Etching (Br-IBAE) is shown to be useful in removing GaSb wafer chemical mechanical polish (CMP) surface and subsurface damage; creating microstructure patterns in GaSb surfaces through stencil, photoresist, and oxides masks; and stabilizing the as-etched GaSb surface with a thin, easily thermally desorbed oxide layer. Thus, the Br-IBAE technique is well suited as a GaSb surface final-polish technique in overgrowth applications that require “epi-ready” GaSb (100) surfaces for molecular beam epitaxy (MBE) as well as applications such as quantum wires and dots that require high-quality GaSb/AlInGaSb MBE overgrowth over patterned GaSb (100) surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.