Budnik et al., 1990), proteins of the cAMP cascade (Zhong et al., 1992), the cell adhesion molecule Fasciclin II (Fas II) (Schuster et al., 1996b), the extracellular matrix
We show that the BMP ortholog Gbb can signal by a retrograde mechanism to regulate synapse growth of the Drosophila neuromuscular junction (NMJ). gbb mutants have a reduced NMJ synapse size, decreased neurotransmitter release, and aberrant presynaptic ultrastructure. These defects are similar to those we observe in mutants of BMP receptors and Smad transcription factors. However, whereas these BMP receptors and signaling components are required in the presynaptic motoneuron, Gbb expression is required in large part in postsynaptic muscles; gbb expression in muscle rescues key aspects of the gbb mutant phenotype. Consistent with this notion, we find that blocking retrograde axonal transport by overexpression of dominant-negative p150/Glued in neurons inhibits BMP signaling in motoneurons. These experiments reveal that a muscle-derived BMP retrograde signal participates in coordinating neuromuscular synapse development and growth.
SUMMARY
Spinal muscular atrophy (SMA) is a motor neuron disease caused by deficiency of the ubiquitous survival motor neuron (SMN) protein. To define the mechanisms of selective neuronal dysfunction in SMA, we investigated the role of SMN-dependent U12 splicing events in the regulation of motor circuit activity. We show that SMN deficiency perturbs splicing and decreases the expression of a subset of U12 intron-containing genes in mammalian cells and Drosophila larvae. Analysis of these SMN target genes identifies Stasimon as a novel protein required for motor circuit function. Restoration of Stasimon expression in the motor circuit corrects defects in neuromuscular junction transmission and muscle growth in Drosophila SMN mutants and aberrant motor neuron development in SMN-deficient zebrafish. These findings directly link defective splicing of critical neuronal genes induced by SMN deficiency to motor circuit dysfunction, establishing a molecular framework for the selective pathology of SMA.
Metastasis-the disseminated growth of tumours in distant organs-underlies cancer mortality. Breast-to-brain metastasis (B2BM) is disconcertingly common and disruptive, being prevalent in the aggressive basal-like subtype, albeit evident at varying frequencies in all subtypes. Previous studies revealed parameters of breast cancer metastasis to brain, but its preference for this site remains an enigma. Herein we show that B2BM cells co-opt a neuronal signaling pathway recently implicated in invasive tumour growth, involving activation by glutamate ligand of an N-methyl-Daspartate receptor (NMDAR), whose signaling is demonstrably instrumental in model systems for metastatic colonization of the brain, and associated with poor prognosis. While NMDAR receptor activation is autocrine in some primary tumour types, human and mouse B2BM cells express Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.