The notion that animals can detect the Earth's magnetic field was once ridiculed, but is now well established. Yet the biological nature of such magnetosensing phenomenon remains unknown. Here, we report a putative magnetic receptor (Drosophila CG8198, here named MagR) and a multimeric magnetosensing rod-like protein complex, identified by theoretical postulation and genome-wide screening, and validated with cellular, biochemical, structural and biophysical methods. The magnetosensing complex consists of the identified putative magnetoreceptor and known magnetoreception-related photoreceptor cryptochromes (Cry), has the attributes of both Cry- and iron-based systems, and exhibits spontaneous alignment in magnetic fields, including that of the Earth. Such a protein complex may form the basis of magnetoreception in animals, and may lead to applications across multiple fields.
Metastasis-the disseminated growth of tumours in distant organs-underlies cancer mortality. Breast-to-brain metastasis (B2BM) is disconcertingly common and disruptive, being prevalent in the aggressive basal-like subtype, albeit evident at varying frequencies in all subtypes. Previous studies revealed parameters of breast cancer metastasis to brain, but its preference for this site remains an enigma. Herein we show that B2BM cells co-opt a neuronal signaling pathway recently implicated in invasive tumour growth, involving activation by glutamate ligand of an N-methyl-Daspartate receptor (NMDAR), whose signaling is demonstrably instrumental in model systems for metastatic colonization of the brain, and associated with poor prognosis. While NMDAR receptor activation is autocrine in some primary tumour types, human and mouse B2BM cells express Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
There is increasing evidence that circular RNA (circRNA) are involved in cancer development, but the regulation and function of human circRNA remain largely unknown. In this study, we demonstrated that ZKSCAN1, a zinc finger family gene, is expressed in both linear and circular (circZKSCAN1) forms of RNA in human hepatocellular carcinoma (HCC) tissues and cell lines. Here, we analyzed a cohort of 102 patients and found that expression of both ZKSCAN1
mRNA and circZKSCAN1 was significantly lower (P < 0.05) in the HCC samples compared with that in matched adjacent nontumorous tissues by reverse transcription PCR (RT‐PCR). The low expression level of ZKSCAN1 was only associated with tumor size (P = 0.032), while the cirZKSCAN1 levels varied in patients with different tumor numbers (P < 0.01), cirrhosis (P = 0.031), vascular invasion (P = 0.002), or microscopic vascular invasion (P = 0.002), as well as with the tumor grade (P < 0.001). Silencing both ZKSCAN1
mRNA and circZKSCAN1 promoted cell proliferation, migration, and invasion. In contrast, overexpression of both forms of RNA repressed HCC progression in vivo and in vitro. Silencing or overexpression of both forms of RNA did not interfere with each other. RNA‐seq revealed a very different molecular basis for the observed effects; ZKSCAN1
mRNA mainly regulated cellular metabolism, while circZKSCAN1 mediated several cancer‐related signaling pathways, suggesting a nonredundant role for ZKSCAN1
mRNA and circRNA. In conclusion, our results revealed two post‐translational products (ZKSCAN1
mRNA and circZKSCAN1) that cooperated closely with one another to inhibit growth, migration, and invasion of HCC. cirZKSCAN1 might be a useful marker for the diagnosis of HCC.
Background: microRNA-99a markedly decreases in HCC. Results: microRNA-99a expression correlates with HCC patients' survival, and microRNA-99a restoration suppresses HCC growth in vitro and in vivo by targeting IGF-1R and mTOR. Conclusions: microRNA-99a could be prognosis predictor and tumor suppressor for HCC. Significance: Reveal the important role of microRNA-99a in HCC development and provide prognosis predictor and therapeutic approach for HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.