Significance
The free energy functional is a central component of continuum dynamical models used to describe phase transitions, microstructural evolution, and pattern formation. However, despite the success of these models in many areas of physics, chemistry, and biology, the standard free energy frameworks are frequently characterized by physically opaque parameters and incorporate assumptions that are difficult to assess. Here, we introduce a mathematical formalism that provides a unifying umbrella for constructing free energy functionals. We show that Ginzburg–Landau framework is a special case of this umbrella and derive a generalization of the widely employed Cahn–Hilliard equation. More broadly, we expect the framework will also be useful for generalizing higher-order theories, establishing formal connections to microscopic physics, and coarse graining.
Surface acoustic wave devices have been fabricated on a GaAs 100 substrate to demonstrate the capability of 2D Raman microscopy as an imaging technique for acoustic waves on the surface of a piezoelectric substrate. Surface acoustic waves are generated using a two-port interdigitated transducer platform, which is modified to produce surface standing waves. We have derived an analytical model to relate Raman peak broadening to the near-surface strain field of the GaAs surface produced by the surface acoustic waves. Atomic force microscopy is used to confirm the presence of a standing acoustic wave, resolving a total vertical displacement of 3 nm at the antinode of the standing wave. Stress calculations are performed for both imaging techniques and are in good agreement, demonstrating the potential of this Raman analysis.
Arsenic's high vapor pressure leads to thermal instability during high-temperature processing (>370 °C) of GaAs, contributing to the performance degradation of subsequently fabricated devices. The resulting surface damage also obfuscates the exact quantitative characterization of the diffusion process, a critical step in device manufacturing. In this experiment, an encapsulant-and-sacrificial-layer procedure is employed to reduce arsenic sublimation and preserve a smooth surface. A capped GaAs/InGaAs/GaAs quantum well structure is subjected to rapid thermal annealing, and AFM, SEM, and energy-dispersive x-ray spectroscopy are used to compare the surface qualities of the postannealed encapsulated GaAs against the reference GaAs. For the encapsulated substrate, a smooth surface with an average root-mean-squared value of 6.5 Å is achieved after high-temperature processing. SIMS analysis is used to obtain the diffused indium atomic concentration profiles for a smooth and roughened GaAs surface and their corresponding diffusion parameters. The interdiffusion characterization process demonstrates in a GaAs/InGaAs system how precise diffusion parameter extraction requires preserving an atomically smooth surface when using surface-sensitive techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.