The effects of copper(I) and copper(II) metal centers on the atom transfer radical polymerization (ATRP) of styrene and methyl acrylate were investigated. The free-radical polymerizations were initiated by AIBN in the presence of copper(I) and copper(II) complexes. For methyl acrylate, the rate of the polymerization was reduced in the presence of CuIBr/dNbpy and CuIOTf/dTbpy but was unaffected by the presence of CuII(OTf)2/dTbpy. For styrene, under conditions which yield relatively low molecular weight polymer (16 000), no effect was observed in the presence of CuII(OTf)2/dNbpy; however, under conditions which yield high molecular weight polystyrene (50 000-100 000), the polymerization was limited in the molecular weight attainable and stopped at partial conversion. No effect was observed for the free-radical polymerization of styrene in the presence of copper(I) complexes. These results indicate that control in ATRP does not originate in interactions of growing radicals with copper complexes but in the reversible halogen atom transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.