Neuroendoscopic procedures, particularly transnasal skull-base procedures, are currently performed with 2D endoscopes that lack stereoscopic vision and depth of field. In principal, 3D vision should be preferable to the operating surgeon, but the previously existing systems have not been adopted. We evaluated a novel 3D endoscope to compare with 2D endoscopy. 33 neurosurgeons and skull-base otolaryngologists were recruited, and randomized to complete two runs of a task-based simulator paradigm using 2D and/or 3D visualization. After the two trials, each subject completed a questionnaire assessing professional demographics and preferences for visualization. The task paradigm had objective endpoints that measured speed, efficiency, and error rates. 75% of respondents preferred 3D endoscopy, and 87.5% determined that 3D visualization either somewhat or greatly helped with the assigned tasks. In the second run, subjects using 3D demonstrated a significantly higher efficiency than subjects using 2D (p=0.04). Subjects' speed and efficiency improved significantly when moving from 2D to 3D, and speed and efficiency improved significantly from Run 1 to Run 2 for 3D visualization. Subjective and objective outcomes support the utility of 3D visualization for neuroendoscopic techniques. Visualization that provides real-time, high-resolution binocular depth perception has a role in endoscopic skull base surgery and other neuroendoscopic procedures.
Human gene detection High-throughput mass spectroscopy data combined with a six-frame translation of the human genome can be used to identify novel protein encoding genes, as demonstrated with a search for plasma proteins.
Objectives Evidence-based traumatic brain injury guidelines support cerebral perfusion pressure thresholds for adults at a class 2 level, but evidence is lacking in younger patients. The purpose of this study is to identify the impact of age-specific cerebral perfusion pressure thresholds on short-term survival among patients with severe traumatic brain injury. Design Institutional review board-approved, prospective, observational cohort study. Patients Data on all patients with a postresuscitation Glasgow Coma Score less than 9 were added in the Brain Trauma Foundation prospective New York State TBI-trac database. Measurements and Main Results We calculated the survival rates and relative risks of mortality for patients with severe traumatic brain injury based on predefined age-specific cerebral perfusion pressure thresholds. A higher threshold and a lower threshold were defined for each age group: 60 and 50 mm Hg for 12 years old or older, 50 and 35 mm Hg for 6–11 years, and 40 and 30 mm Hg for 0–5 years. Patients were stratified into age groups of 0–11, 12–17, and 18 years old or older. Three exclusive groups of CPP-L (events below low cerebral perfusion pressure threshold), CPP-B (events between high and low cerebral perfusion pressure thresholds), and CPP-H (events above high cerebral perfusion pressure threshold) were defined. As an internal events of hypotension and elevated intracranial pressure. Survival was significantly higher in 0–11 and 18 years old or older age groups for patients with CPP-H events compared with those with CPP-L events. There was a significant decrease in survival with prolonged exposure to CPP-B events for the 0–11 and 18 years old and older age groups when compared with the patients with CPP-H events (p = 0.0001 and p = 0.042, respectively). There was also a significant decrease in survival with prolonged exposure to CPP-L events in all age groups compared with the patients with CPP-H events (p < 0.0001 for 0- to 11-yr olds, p = 0.0240 for 12- to 17-yr olds, and p < 0.0001 for 18-yr old and older age groups). The 12- to 17-year olds had a significantly higher likelihood of survival compared with adults with prolonged exposure to CPP-L events (< 50 mm Hg). CPP-L events were significantly related to systemic hypotension for the 12- to 17-year-old group (p = 0.004) and the 18-year-old and older group (p < 0.0001). CPP-B events were significantly related to systemic hypotension in the 0- to 11-year-old group (p = 0.014). CPP-B and CPP-L events were significantly related to elevated intracranial pressure in all age groups. Conclusions Our data provide new evidence that cerebral perfusion pressure targets should be age specific. Furthermore, cerebral perfusion pressure goals above 50 or 60 mm Hg in adults, above 50 mm Hg in 6- to 17-year olds, and above 40 mm Hg in 0- to 5-year olds seem to be appropriate targets for treatment-based studies. Systemic hypotension had an inconsistent relationship to events of low cerebral perfusion pressure, whereas elevated intracranial pressur...
We present a technique that simulates wet garments for virtual humans with realistic folds and wrinkles. Our approach combines three new models to allow realistic simulation of wet garments: (1) a simplified saturation model that modifies the masses, (2) a nonlinear friction model derived from previously reported, real-world measurements, and (3) a wrinkle model based on imperfection sensitivity theory. In contrast to previous approaches to wet cloth, the proposed models are supported by the experimental results reported in the textile literature with parameters varying over the course of the simulation. As a result, the wet garment motions simulated by our method are comparable to that of real wet garments. Our approach recognizes the special, practical importance of contact models with human skin and provides a specific skin-cloth friction solution. We evaluate our approach by draping a rotating sphere and simulating a typical garment on a virtual human in the rain. Both of these examples are typical scenarios within computer graphics research.
Background Despite technological advances in the tracking of surgical motions, automatic evaluation of laparoscopic skills remains remote. A new method is proposed that combines multiple discrete motion analysis metrics. This new method is compared with previously proposed metric combination methods and shown to provide greater ability for classifying novice and expert surgeons. Methods For this study, 30 participants (four experts and 26 novices) performed 696 trials of three training tasks: peg transfer, pass rope, and cap needle. Instrument motions were recorded and reduced to four metrics. Three methods of combining metrics into a prediction of surgical competency (summed-ratios, z-score normalization, and support vector machine [SVM]) were compared. The comparison was based on the area under the receiver operating characteristic curve (AUC) and the predictive accuracy with a previously unseen validation data set. Results For all three tasks, the SVM method was superior in terms of both AUC and predictive accuracy with the validation set. The SVM method resulted in AUCs of 0.968, 0.952, and 0.970 for the three tasks compared respectively with 0.958, 0.899, and 0.884 for the next best method (weighted z-normalization). The SVM method correctly predicted 93.7, 91.3, and 90.0% of the subjects' competencies, whereas the weighted z-normalization respectively predicted 86.6, 79.3, and 75.7% accurately (p \ 0.002). Conclusions The findings show that an SVM-based analysis provides more accurate predictions of competency at laparoscopic training tasks than previous analysis techniques. An SVM approach to competency evaluation should be considered for computerized laparoscopic performance evaluation systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.