Despite great progress in 3D pose estimation from single-view images or videos, it remains a challenging task due to the substantial depth ambiguity and severe selfocclusions. Motivated by the effectiveness of incorporating spatial dependencies and temporal consistencies to alleviate these issues, we propose a novel graph-based method to tackle the problem of 3D human body and 3D hand pose estimation from a short sequence of 2D joint detections. Particularly, domain knowledge about the human hand (body) configurations is explicitly incorporated into the graph convolutional operations to meet the specific demand of the 3D pose estimation. Furthermore, we introduce a local-to-global network architecture, which is capable of learning multi-scale features for the graph-based representations. We evaluate the proposed method on challenging benchmark datasets for both 3D hand pose estimation and 3D body pose estimation. Experimental results show that our method achieves state-of-the-art performance on both tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.