The development of anthropogenic structures, especially those related to energy resources, in sagebrush ecosystems is an important concern among developers, conservationists, and land managers in relation to greater sage‐grouse (Centrocercus urophasianus; hereafter, sage‐grouse) populations. Sage‐grouse are dependent on sagebrush ecosystems to meet their seasonal life‐phase requirements, and research indicates that anthropogenic structures can adversely affect sage‐grouse populations. Land management agencies have attempted to reduce the negative effects of anthropogenic development by assigning surface use (SU) designations, such as no surface occupancy, to areas around leks (breeding grounds). However, rationale for the size of these areas is often challenged. To help inform this issue, we used a spatial analysis of sage‐grouse utilization distributions (UDs) to quantify seasonal (spring, summer and fall, winter) sage‐grouse space use in relation to leks. We sampled UDs from 193 sage‐grouse (11,878 telemetry locations) across 4 subpopulations within the Bi‐State Distinct Population Segment (DPS, bordering California and Nevada) during 2003–2009. We quantified the volume of each UD (vUD) within a range of areas that varied in size and were centered on leks, up to a distance of 30 km from leks. We also quantified the percentage of nests within those areas. We then estimated the diminishing gains of vUD as area increased and produced continuous response curves that allow for flexibility in land management decisions. We found nearly 90% of the total vUD (all seasons combined) was contained within 5 km of leks, and we identified variation in vUD for a given distance related to season and migratory status. Five kilometers also represented the 95th percentile of the distribution of nesting distances. Because diminishing gains of vUD was not substantial until distances exceeded 8 km, managers should consider the theoretical optimal distances for SU designation between 5.0 km and 7.5 km, depending on migratory status. Although these results represent space use for sage‐grouse within the Bi‐State DPS, our results likely have broad relevance to other areas with similar landscape characteristics and patterns of space use. © 2013 The Wildlife Society.
The estimation of survival is an essential but difficult task important for developing rigorous conservation programs. Radio telemetry studies of wildlife survival are often characterized by small sample sizes and high rates of censoring. In cases where multiple radio telemetry studies of a species exist, shared frailty models of survival offer the ability to combine data from multiple studies and improve the precision of survival estimates. We used Bayesian analysis of shared frailty models to examine survival of adult females of the giant gartersnake (Thamnophis gigas) in the Sacramento Valley, California, USA, and to examine the effects of individual and habitat characteristics on daily risk of mortality. Posterior mean annual survival probability of adult females was 0.61 [95% credible interval (CI) = 0.41-0.79]. The daily risk of mortality for adult female giant gartersnakes while in terrestrial habitats was 0.38 (0.09-0.89) times as great as when they inhabited aquatic habitats. Although 95% CIs for hazard ratios of other covariates included one, sites varied substantially in the effect of linear habitats, which appear to have context-dependent effects on survival. Assessing survival with shared frailty models allows the prediction of survival probabilities at novel sites and identifies regional and context-specific mortality risks that can be targeted for conservation action.
Citation: Rose, J. P., G. D. Wylie, M. L. Casazza, and B. J. Halstead. 2018. Integrating growth and capturemark-recapture models reveals size-dependent survival in an elusive species. Ecosphere 9(8):Abstract. Survival is a key vital rate for projecting the viability of wild populations. Estimating survival is difficult for many rare or elusive species because recapture rates of marked individuals are low, and the ultimate fate of individuals is unknown. Low recapture rates for many species have made it difficult to accurately estimate survival, and to evaluate the importance of individual and environmental covariates for survival. Individual covariates such as size are particularly difficult to include in capture-mark-recapture models for elusive species because the state of the individual is unknown during periods when it is not captured. Here, we integrate a von Bertalanffy growth model with a multi-state robust-design Cormack-Jolly-Seber model to test for a relationship between body size and survival in the elusive, threatened giant gartersnake, Thamnophis gigas. We take a Bayesian approach to model the size of an individual during periods when it was not captured and measured, which fully propagates uncertainty in this unobserved covariate. We found strong support for a positive relationship between snake size and annual survival, with survival increasing with size up to a peak for adult snakes, after which survival either declines slightly or plateaus for the largest individuals. Few captures of very small and very large individuals led to high uncertainty in the survival rates of these sizes. Survival of giant gartersnakes was also positively related to the amount of precipitation and the cover of emergent and floating vegetation at a site. To our knowledge, our study is the first to estimate a sizesurvival relationship in a snake while fully accounting for uncertainty in the size of unobserved individuals. Our results have implications for the management of this threatened species and illustrate the utility of integrating hierarchical Bayesian models to the study of survival in elusive species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.