Distinct motor patterns are selected from a multifunctional neuronal network by activation of different modulatory projection neurons. Subsets of these projection neurons can contain the same neuromodulator(s), yet little is known about the relative influence of such neurons on network activity. We have addressed this issue in the stomatogastric nervous system of the crab Cancer borealis. Within this system, there is a neuronal network in the stomatogastric ganglion (STG) that produces many versions of the pyloric and gastric mill rhythms. These different rhythms result from activation of different projection neurons that innervate the STG from neighboring ganglia and modulate STG network activity. Three pairs of these projection neurons contain the neuropeptide proctolin. These include the previously identified modulatory proctolin neuron and modulatory commissural neuron 1 (MCN1) and the newly identified modulatory commissural neuron 7 (MCN7). We document here that each of these neurons contains a unique complement of cotransmitters and that each of these neurons elicits a distinct version of the pyloric motor pattern. Moreover, only one of them (MCN1) also elicits a gastric mill rhythm. The MCN7-elicited pyloric rhythm includes a pivotal switch by one STG network neuron from playing a minor to a major role in motor pattern generation. Therefore, modulatory neurons that share a peptide transmitter can elicit distinct motor patterns from a common target network.
1. In the isolated stomatogastric nervous system of the crab Cancer borealis (Fig. 1), the muscarinic agonist oxotremorine elicits several distinct gastric mill motor patterns from neurons in the stomatogastric ganglion (STG; Fig. 2). Selection of a particular gastric mill rhythm is determined by activation of distinct projection neurons that influence gastric mill neurons within the STG. In this paper we identify one such neuron, called commissural projection neuron 2 (CPN2), whose rhythmic activity is integral in producing one form of the gastric mill rhythm. 2. There is a CPN2 soma and neuropilar arborization in each commissural ganglion (CoG). The CPN2 axon projects through the superior esophageal nerve (son) and the stomatogastric nerve (stn) to influence neurons in the STG (Figs. 3 and 4A). 3. CPN2 activity influences most of the gastric mill neurons in the STG. Specifically, CPN2 excites gastric mill neurons GM and LG (gastric mill and lateral gastric, respectively) and inhibits the dorsal gastric (DG), anterior median (AM), medial gastric (MG), and inferior cardiac (IC) neurons (Figs. 5 and 6). CPN2 also indirectly inhibits gastric mill neurons Int1 and VD (interneuron 1 and ventricular dilator neuron, respectively) through its activation of LG. The CPN2 excitatory effects are mediated at least partly via discrete excitatory postsynaptic potentials (EPSPs; Fig. 4B), whereas its inhibitory effects are produced via smooth hyperpolarizations. 4. Within the CoG, CPN2 receives excitatory synaptic input from the anterior gastric receptor neuron (AGR), a gastric mill proprioceptive sensory neuron (Fig. 7) and inhibitory synaptic input from the gastric mill interneuron, Int1 (Fig. 8). 5. During one form of the gastric mill rhythm, CPN2 fires rhythmically in time with the gastric mill motor pattern, whereas it is silent or fires weakly during other gastric mill rhythms (Fig. 9). 6. When CPN2 rhythmic activity is suppressed during a CPN2-influenced gastric mill rhythm, the gastric mill rhythm continues, but the pattern is altered (Fig. 10). Moreover, transiently stimulating CPN2 during any ongoing gastric mill motor pattern can reset the timing of that rhythm (Fig. 11). 7. Tonic activity in CPN2 is insufficient to elicit a gastric mill rhythm (Fig. 12). Phasic activity in CPN2 can elicit a gastric mill rhythm only in preparations in which gastric mill neurons are already in an excited state (Figs. 12 and 13). 8. CPN2 recruitment plays a pivotal role in determining the final form of the gastric mill rhythm.(ABSTRACT TRUNCATED AT 400 WORDS)
1. We have used multiple, simultaneous intra- and extracellular recordings as well as Lucifer yellow dye-fills to identify modulatory commissural neuron 5 (MCN5) and characterize its effects in the stomatogastric nervous system (STNS) of the crab, Cancer borealis. MCN5 has a soma and neuropilar arborization in the commissural ganglion (CoG; Figs. 1 and 2), and it projects through the inferior esophageal nerve (ion) and stomatogastric nerve (stn) to the stomatogastric ganglion (STG; Figs. 1-3). 2. Within the CoGs, MCN5 receives esophageal rhythm-timed excitation and pyloric rhythm-timed inhibition (Fig. 4). Additionally, during the lateral teeth protractor phase of the gastric mill rhythm, the pyloric-timed inhibition of MCN5 is reduced or eliminated. 3. Intracellular stimulation of MCN5 excites the pyloric pacemaker ensemble, including the anterior burster (AB), pyloric dilator (PD), and lateral posterior gastric (LPG) neurons. This produces a faster pyloric rhythm. MCN5 stimulation also inhibits all nonpacemaker pyloric neurons, reducing or eliminating their activity (Figs. 5 and 6A; Tables 1 and 2). After MCN5 stimulation, bursting is enhanced for several cycles in some pyloric neurons when compared with their prestimulus activity (Figs. 5 and 6A; Tables 1 and 2). 4. MCN5 evokes distinct responses from each pyloric pacemaker neuron (Figs. 6-8). The AB and LPG neurons respond with increased activity. The AB response includes the presence of large amplitude excitatory postsynaptic potentials (EPSPs) that contribute to a depolarization of the trough of its rhythmic oscillations (Fig. 6). LPG responds by exhibiting increased activity that prolongs the duration of its burst beyond that of AB and PD (Fig. 7). In contrast, MCN5 stimulation initially produces decreased PD neuron activity, followed by a slight enhancement of each PD burst (Figs. 7 and 8). PD activity is further enhanced after MCN5 stimulation (Figs. 7 and 8). 5. MCN5-elicited action potentials evoke discrete, constant latency inhibitory postsynaptic potentials (IPSPs) in all nonpacemaker pyloric neurons, including the inferior cardiac (IC), lateral pyloric (LP), pyloric (PY), and ventricular dilator (VD) neurons (Fig. 9). MCN5 activity also inhibits these neurons indirectly, via its excitation of the pacemaker neurons. The pyloric pacemaker neurons synaptically inhibit all four nonpacemaker neurons. 6. The increased activity in the VD neuron, after MCN5 stimulation, is not mimicked by either direct hyperpolarization or by synaptically inhibiting VD via another pathway (Fig. 10). The poststimulation increase in IC neuron activity is stronger than that after hyperpolarizing current injection but is comparable with that resulting from stimulation of another inhibitory pathway (Fig. 10). The enhanced PY neuron activity is comparable with that resulting from either direct current injection or synaptic inhibition from another pathway (Fig. 10). 7. MCN5 activity increases the pyloric cycle frequency of both slow (< 1 Hz) and fast (1-2 Hz) rhythms (Fig. 11), an...
Experimental and corresponding modeling studies have demonstrated a 2–5 fold variation of intrinsic and synaptic parameters across animals, while functional output is maintained. These studies have led to the hypothesis that correlated, compensatory changes in particular parameters can at least partially explain the biological variability in parameters. Using the leech heartbeat CPG, we selected three different segmental motor neurons that fire in a functional phase progression but receive input from the same four premotor interneurons. Previous work suggested that the phase progression arises because the pattern of relative strength of the four inputs varies systematically across the segmental motor neurons. Nevertheless, there was considerable animal-to-animal variation in the absolute strengths of these connections. We tested the hypothesis that functional output is maintained in the face of variation in the absolute strength of connections because relative strengths onto particular motor neurons are maintained. We found relative strength is not strictly maintained across animals even as functional output is maintained, and animal-to-animal variations in relative strength of particular inputs do not correlate strongly with output phase. In parallel with this variation in synaptic strength, the firing phase of the premotor inputs to these motor neurons varies considerably across individuals. We conclude that the number (four) of inputs to each motor neuron, which each vary in strength, and the phase diversity of the temporal pattern of input from the CPG diminish the influence of individual inputs. We hypothesize that each animal arrives at a unique solution for how the network produces functional output.
The central pattern generator (CPG) for heartbeat in medicinal leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts, synchronous and peristaltic. Using extracellular recordings from premotor interneurons and voltage-clamp recordings of ipsilateral segmental motor neurons in 69 isolated nerve cords, we assessed the strength and dynamics of premotor inhibitory synaptic output onto the entire ensemble of heart motor neurons and the associated conduction delays in both coordination modes. We conclude that premotor interneurons establish a stereotypical pattern of intersegmental synaptic connectivity, strengths, and dynamics that is invariant across coordination modes, despite wide variations among preparations. These data coupled with a previous description of the temporal pattern of premotor interneuron activity and relative phasing of motor neuron activity in the two coordination modes enable a direct assessment of how premotor interneurons through their temporal pattern of activity and their spatial pattern of synaptic connectivity, strengths, and dynamics coordinate segmental motor neurons into a functional pattern of activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.