Metal halide lamps typically have cold fills of tens to a few hundred Torr of a rare gas and the vapour from the dosing of a metal halide solid and mercury. Breakdown and starting of the lamp occurs following application of multi-kV pulses across electrodes separated by a few centimetres. Restarting of warm lamps is often problematic as the available voltage is insufficient to break down the higher pressure (>many atm) of metal halide vapour. In this paper, fundamental processes during breakdown in cold and warm, idealized metal halide lamps in mixtures of Ar and Hg are investigated using a two-dimensional fluid model for plasma transport. We find that the capacitances of the walls of the discharge tube and adjacent ground planes are important in determining the breakdown voltage and avalanche characteristics. The prompt capacitance represented by, for example, external trigger wires provides a larger E/N to sustain ionization early in the avalanche. This effect is lost as the walls charge and shield the plasma from the ground planes. More rapid breakdown occurs in slightly warm lamps having small vapour pressures of Hg due to the resulting Penning mixture. Warmer lamps, having larger mole fractions of Hg, have less efficient breakdown as the increase in momentum transfer of the electrons is not offset by the additional ionization sources of the Penning mixture.
The breakdown of a cold metal halide lamp has been investigated using a two-dimensional, plasma transport model. Images are presented of the electron density during the trigger and sustain voltage pulses. Charging of the sidewalls of the lamp are found to be important during gap closure.
Ultra compact, short pulse, high voltage and current pulsers are needed for a variety of non-linear electrical and optical applications. With a fast rise time and short pulse width, these drivers are capable of producing sub-nanosecond electrical and optical pulses by gain switching semiconductor laser diodes. Gain-switching of laser diodes requires a sub-nanosecond pulser with low output impedance (5 W or less) to generate a fast (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.