[reaction: see text] The title technique is a convenient and powerful method for directly monitoring or assaying any reaction mixture or reagent solution. Examples of some common processes (Fischer esterification, lithiation, butyllithium/THF compatibility, olefin metathesis, and a quantification assay), each interrogated in its native solvent, are presented. The spectral data are easy to acquire, and the information content makes a compelling case for routine use of No-D NMR spectroscopy.
[reaction: see text] The concentration of organolithium, organomagnesium halide, and lithium diisopropylamide solutions can be reliably determined using No-D NMR spectroscopy by integration against the added internal standard 1,5-cyclooctadiene (COD) (or cyclooctene). In addition, common impurities and degradation products can be assessed.
The mechanistic foundations of the Lewis base catalyzed aldol addition reactions have been investigated. From a combination of low-temperature spectroscopic studies ((29)Si and (31)P NMR) and kinetic analyses using a rapid-injection NMR apparatus (RINMR), a correlation of the ground states and transition structures for the aldolization reactions has been formulated. The aldol addition of the tert-butylsilyl ketene acetal of tert-butyl propanoate with 1-naphthaldehyde is efficiently catalyzed by a combination of silicon tetrachloride and chiral phosphoramide Lewis bases. The rates and selectivities of the aldol additions are highly dependent on the structure of the Lewis bases: bisphosphoramides give the highest rate and selectivity, whereas a related monophosphoramide reacts slowly and with low selectivity. The monophosphoramide shows no nonlinear behavior. All of the additions show a first-order kinetic dependence on silyl ketene acetal and 1-naphthaldehyde and a zeroth-order dependence on silicon tetrachloride. The kinetic order in catalyst is structure dependent and is either half-, two-thirds-, or first-order. All of the phosphoramides are saturated with silicon tetrachloride in some form, and the resting-state species are mixtures of monomeric and dimeric, pentacoordinate cationic, or hexacoordinate neutral complexes. These data allow the formulation of a unified mechanistic scheme based on the postulate of a common reactive intermediate for all catalysts.
The title compound, 16-epi-latrunculin B (3), has been isolated from the sponge Negombata magnifica collected from the Red Sea near Hurghada, Egypt. This new natural product was determined to be an epimer of latrunculin B (1), which was found in the same sponge collection. The structure of 3 was initially deduced from proton and carbon NMR chemical shift trends and proton-proton nuclear Overhauser effect experiments. The cytotoxicity (murine tumor and normal cell lines) and antiviral (HSV-1) properties of 3 and 1 were determined. A computational study applicable to this class of stereochemical problems was then investigated. Specifically, the complete set of vicinal and allylic coupling constants was calculated for each of the four diastereomers whose configurations differed at C(8) and C(16). These computed J's were then compared with the experimental J values (28 in number) determined for 1 and 3. This analysis resulted in the same assignment of relative configuration for compound 3 reached using the more classical methods. The validity of the method is established by the fact that the 28 computed coupling constants for (known) 1 and (newly determined) 3 varied from the experimental J values with an average of just 0.57 and 0.53 Hz, respectively. This strategy represents a general, powerful, and readily adoptable tool for determining the relative configuration of complex molecules.
A Rapid Injection NMR (RINMR) apparatus has been designed and constructed to allow the observation of fast chemical reactions in real time by NMR spectroscopy. The instrument was designed to allow the rapid (<2 s) injection and mixing of a metered volume of a reagent into a spinning NMR tube followed by rapid acquisition of the data resulting from the evolution of the chemical process. The various design criteria for this universal system included the ability to deliver any chemical reagent at any temperature and allow for the observation of any nucleus. The various challenges associated with the construction and implementation of this instrument are documented along with the validation of the accuracy of the apparatus with respect to volume and temperature. Finally, the ultimate validation and reproducibility of the technique is presented in the form of three case studies that used the instrument to elucidate various aspects of organic reaction mechanisms. The authors urge interested parties to not embark on the construction of their own instrument and invite those whose research problems might be amenable to this kind of analysis to contact the corresponding author for access to the apparatus described herein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.