An aldol-based ‘build/couple/pair’ (B/C/P) strategy was applied to generate a collection of stereochemically and skeletally diverse small molecules. In the build phase, a series of asymmetric syn- and anti- aldol reactions were performed to produce four stereoisomers of a Boc protected γ-amino acid. In addition both stereoisomers of O-PMB-protected alaninol were generated to provide a chiral amine coupling partner. In the couple step, eight stereoisomeric amides were synthesized by coupling the chiral acid and amine building blocks. The amides were subsequently reduced to generate the corresponding secondary amines. In the pair phase, three different reactions were employed to enable intramolecular ring-forming processes, namely: nucleophilic aromatic substitution (SNAr), Huisgen [3+2] cycloaddition and ring-closing metathesis (RCM). Despite some stereochemical dependencies, the ring-forming reactions were optimized to proceed with good to excellent yields providing a variety of skeletons ranging in size from 8- to 14-membered rings. Scaffolds resulting from the RCM pairing reaction were diversified on solid-phase to yield a 14,400-membered library of macrolactams. Screening of this library led to the discovery of a novel class of histone deacetylase inhibitors, which display mixed enzyme inhibition and led to increased levels of acetylation in a primary mouse neuron culture. The development of stereo-structure/activity relationships (SSAR) was made possible by screening all 16 stereoisomers of the macrolactams produced through the aldol-based B/C/P strategy.
[reaction: see text] The title technique is a convenient and powerful method for directly monitoring or assaying any reaction mixture or reagent solution. Examples of some common processes (Fischer esterification, lithiation, butyllithium/THF compatibility, olefin metathesis, and a quantification assay), each interrogated in its native solvent, are presented. The spectral data are easy to acquire, and the information content makes a compelling case for routine use of No-D NMR spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.