The mortality of 2650 employees (93.4% males) in the mine and mill production of roofing granules at four plants was examined between 1945 and 2004. Hypotheses focused on diseases associated with exposure to silica: nonmalignant respiratory disease, lung cancer, and nonmalignant renal disease. Study eligibility required ≥ 1 year of employment by 2000. Work history and vital status were followed through 2004 with < 1% lost to follow-up. Industrial hygiene sampling data (1871 sampling measurements over a 32-year period) and professional judgment were used to construct 15 respirable crystalline silica exposure categories. A category was assigned to all plant-, department-, and time-dependent standard job titles. Cumulative respirable crystalline silica exposure (mg/m(3)-years) was calculated as the sum of the product of time spent and the average exposure for each plant-, department-, job-, and calendar-year combination. The cohort geometric mean was 0.17 mg/m(3)-years (geometric standard deviation 4.01) and differed by plant. Expected deaths were calculated using U.S. (entire cohort) and regional (each plant) mortality rates. Poisson regression was used for internal comparisons. For the entire cohort, 772 deaths (97.4% males) were identified (standardized mortality ratio 0.95, 95% CI 0.88-1.02). There were 50 deaths from nonmalignant respiratory diseases (1.14, 95% CI 0.85-1.51). Lagging exposure 15 years among the male cohort, the relative risks for nonmalignant respiratory disease were 1.00 (reference), 0.80, 1.94, and 2.03 (p value trend = 0.03) when cumulative exposure was categorized < 0.1, 0.1- < 0.5, 0.5- < 1.0, and ≥ 1.0 mg/m(3)-years, respectively. There was a total of 77 lung cancer deaths (1.11, 95% CI 0.88-1.39). Lagging exposure 15 years, the relative risks for males were 1.00 (reference), 1.83, 1.83, and 1.05 (p value trend = 0.9). There were 16 deaths from nonmalignant renal disease (1.76, 95% CI 1.01-2.86). This exposure-response trend was suggestive but imprecise. The study results are consistent with other cohorts with similar levels of exposure to respirable crystalline silica.
A study was conducted to construct a job exposure matrix for the roofing granule mine and mill workers at four U.S. plants. Each plant mined different minerals and had unique departments and jobs. The goal of the study was to generate accurate estimates of the mean exposure to respirable crystalline silica for each cell of the job exposure matrix, that is, every combination of plant, department, job, and year represented in the job histories of the study participants. The objectives of this study were to locate, identify, and collect information on all exposure measurements ever collected at each plant, statistically analyze the data to identify deficiencies in the database, identify and resolve questionable measurements, identify all important process and control changes for each plant-department-job combination, construct a time line for each plant-department combination indicating periods where the equipment and conditions were unchanged, and finally, construct a job exposure matrix. After evaluation, 1871 respirable crystalline silica measurements and estimates remained. The primary statistic of interest was the mean exposure for each job exposure matrix cell. The average exposure for each of the four plants was 0.042 mg/m(3) (Belle Mead, N.J.), 0.106 mg/m(3) (Corona, Calif.), 0.051 mg/m(3) (Little Rock, Ark.), and 0.152 mg/m(3) (Wausau, Wis.), suggesting that there may be substantial differences in the employee cumulative exposures. Using the database and the available plant information, the study team assigned an exposure category and mean exposure for every plant-department-job and time interval combination. Despite a fairly large database, the mean exposure for > 95% of the job exposure matrix cells, or specific plant-department-job-year combinations, were estimated by analogy to similar jobs in the plant for which sufficient data were available. This approach preserved plant specificity, hopefully improving the usefulness of the job exposure matrix.
The National Institute for Occupational Safety and Health (NIOSH) cooperated with 3M Company in the design and testing of a new environmentally controlled primary crusher operator booth at the company’s Wausau granite quarry near Wausau, WI. This quarry had an older crusher booth without a central heating, ventilation and air conditioning (HVAC) system, and without an air filtration and pressurization system. A new replacement operator booth was designed and installed by 3M based on design considerations from past NIOSH research on enclosed cab filtration systems. NIOSH conducted pre-testing of the old booth and post-testing of the new booth to assess the new filtration and pressurization system’s effectiveness in controlling airborne dusts and particulates. The booth’s dust and particulate control effectiveness is described by its protection factor, expressed as a ratio of the outside to inside concentrations measured during testing. Results indicate that the old booth provided negligible airborne respirable dust protection and low particulate protection from the outside environment. The newly installed booth provided average respirable dust protection factors from 2 to 25 over five shifts of dust sampling with occasional worker ingress and egress from the booth, allowing some unfiltered contaminants to enter the enclosure. Shorter-term particle count testing outside and inside the booth under near-steady-state conditions, with no workers entering or exiting the booth, resulted in protection factors from 35 to 127 on 0.3- to 1.0-μm respirable size particulates under various HVAC airflow operating conditions.
Background Millions of workers are potentially exposed to respirable crystalline silica (RCS) which has been associated with several diseases. We updated the mortality experience of a cohort of 2,650 mine and mill workers at four manufacturing facilities to assess cause-specific mortality risks associated with estimated cumulative RCS exposure. Methods Study eligibility was defined as any employee who had ≥1 year of service by 2000, with work history experience available from 1945 through 2004. Vital status and cause of death were ascertained from 1945 through 2015. RCS exposure was estimated across plant-, department-, job-, and time-dependent categories using historic industrial hygiene sampling data and professional judgment. Associations between cumulative RCS (mg/m3-years) and cause-specific mortality were examined using Cox proportional hazard regression models. Results In the exposure-response analysis defined on quartiles of cumulative RCS exposure, no increasing trend (ptrend = 0.37) in lung cancer mortality (n = 116 deaths) was observed (Hazard ratio (HR) = 1.00 (referent), 1.20, 1.85, 0.92). Mortality risk for non-malignant respiratory disease was increased across quartiles (HR = 1.00, 1.35, 1.89, 1.70; ptrend = 0.15), based on 83 deaths. Non-malignant renal disease mortality was increased across quartiles (HR = 1.00, 6.64, 3.79, 3.29; ptrend = 0.11), based on 26 deaths. Conclusions After nearly seven decades of follow-up, the exposure-response analyses showed no evidence of a positive trend for lung cancer, and limited evidence of a trend for non-malignant respiratory disease, and non-malignant renal disease mortality as a result of cumulative RCS exposure in this occupational cohort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.