A parallel microfluidic cytometer (PMC) uses a high-speed scanning photomultiplier-based detector to combine low-pixel-count 1-D imaging with flow cytometry. The 384 parallel flow channels of the PMC decouple count rate from signal-to-noise ratio. Using 6-pixel 1-D images, we investigated protein-localization in a yeast model for a human protein-misfolding disease and demonstrated the feasibility of a nuclear-translocation assay in Chinese-hamster-ovary (CHO) cells expressing a NFκB-GFP reporter.
A 768-lane DNA sequencing system based on microfluidic plates has been designed as a near-term successor to 96-lane capillary arrays. Electrophoretic separations are implemented for the first time in large-format (25 cm x 50 cm) microdevices, with the objective of proving realistic read length, parallelism, and the scaled sample requirements for long-read de novo sequencing. Two 384-lane plates are alternatively cycled between electrophoresis and regeneration via a robotic pipettor. A total of greater than 172000 bases, 99% accuracy (corresponding to quality score 20) is achieved for each iteration of a 384 lane plate. At current operating conditions, this implies a system throughput exceeding 4 megabases of raw sequence (Phred 20) per day on the new platform. Standard operation is at "1/32x" Sanger chemistry, equal to typical genome center operation on mature capillary array machines, and a 16-fold improvement in scaling relative to previous microfabricated devices. Experiments provide evidence that sample concentration can be further reduced to 1/256x Sanger chemistry in the microdevice. Life-testing indicates a usable life of >150 hours (more than 50 runs) for the 384 lane plates. The combined advances, particularly those in read length and sample requirement, directly address the cost model requirements for adaptation of the new technology as the next step beyond capillary array instruments.
We present measurements by deep-ultraviolet mass mapping of nucleic acid (NA) and protein for five commonly cultured and three primary cell types. The dry mass distribution at submicron resolution was determined on a single-cell basis for 250-500 cells from each of these types. Since the method carries a direct reference to a spectrophotometric standard (molar extinction coefficient), we are able to calibrate the absolute weight distributions both on a cell-to-cell basis within each type and across types. We also provide a calibration in absolute mass units for fluorescence-based measurements (flow cytometry and fluorescence microscopy). As might be expected the cultured cell lines show a high concentration of nucleic acids in the nuclear compartment, much larger than the genomic 2C number even in the G1 stage. The whole-cell nucleic-acid/ protein ratio was found to be a characteristic of cell lines that persists independent of cell cycle and, as a result, this ratio has some value for phenotyping. Primary chicken red blood cells (cRBC), often used as a cytometry standard, were determined to have a nuclear-isolated nucleic acid content much closer to the genomic number than the cultured cell lines (cRBC: 3.00 pg total NA, 2.30 pg DNA, and 0.70 pg RNA). The individual blastomeres (n 5 54) from mouse embryos at eight-cell stage were measured and found to vary by more than a factor or two in total protein and nucleic acid content (0.8-2.3 ng total protein, 70-150 pg total NA). The ratio of nucleic acid to protein was more nearly constant for each blastomere from a particular embryo and this ratio was found to be an identifying characteristic that varies from embryo to embryo obtained from a single flushing of a mouse. ' 2013 International Society for Advancement of Cytometry
We report preliminary testing of "GeneTrack", an instrument designed for the specific application of multiplexed short tandem repeat (STR) DNA analysis. The system supports a glass microdevice with 16 lanes of 20 cm effective length and double-T cross injectors. A high-speed galvanometer-scanned four-color detector was specially designed to accommodate the high elution rates on the microdevice. All aspects of the system were carefully matched to practical crime lab requirements for rapid reproducible analysis of crime-scene DNA evidence in conjunction with the United States DNA database (CODIS). Statistically significant studies demonstrate that an absolute, three-sigma, peak accuracy of 0.4-0.9 base pair (bp) can be achieved for the CODIS 13-locus multiplex, utilizing a single channel per sample. Only 0.5 microL of PCR product is needed per lane, a significant reduction in the consumption of costly chemicals in comparison to commercial capillary machines. The instrument is also designed to address problems in temperature-dependent decalibration and environmental sensitivity, which are weaknesses of the commercial capillary machines for the forensics application.
By using imaging spectrophotometry with paired images in the 200- to 280-nm wavelength range, we have directly mapped intracellular nucleic acid and protein distributions across a population of Chinese hamster ovary (CHO-K1) cells. A broadband 100× objective with a numerical aperture of 1.2NA (glycerin immersion) and a novel laser-induced-plasma point source generated high-contrast images with short (~100 ms) exposures and a lateral resolution nearing 200 nm that easily resolves internal organelles. In a population of 420 CHO-K1 cells and 477 nuclei, we found a G1 whole-cell nucleic acid peak at 26.6 pg, a nuclear-isolated total nucleic acid peak at 11.4 pg, and, as inferred by RNase treatment, a G1 total DNA mass of 7.4 pg. At the G1 peak we found a whole-cell protein mass of 95.6 pg, and a nuclear-isolated protein mass of 39.3 pg. An algorithm for protein quantification that senses peptide-bond (220-nm) absorbance was found to have a higher signal-to-noise ratio and to provide more reliable nucleic acid and protein determinations when compared to more classical 280-nm/260-nm algorithms when used for intracellular mass mapping. Using simultaneous imaging with common nuclear stains (Hoechst 33342, Syto-14, and Sytox Orange), we have compared staining patterns to deep-UV images of condensed chromatin and have confirmed bias of these common nuclear stains related to nuclear packaging. The approach allows absolute mass measurements with no special sample preparation or staining. It can be used in conjunction with normal fluorescence microscopy and with relatively modest modification of the microscope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.